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Introduction-Why do we need behavior control?
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The efficacy of reinforcement learning (RL) algorithms in practical applications is heavily reliant on their sampling

efficiency.

Achieving optimal performance with limited data samples is a challenging task, and only a handful of algorithms
can achieve both high sample efficiency and superior final performance.

While some RL models have demonstrated remarkable results in specific tasks, the claim of surpassing human-
level performance is often exaggerated and misleading. Despite recent advancements in RL, the strongest
algorithms still fall short of outperforming human world records on a multitude of tasks.
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[1] Fan, Jiajun, and Changnan Xiao. "Generalized Data Distribution Iteration." International Conference on Machine Learning. PMLR, 2022.
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Algorithm 1 Generalized Data Distribution Iteration

Initialize A, ©, 73(0) 6(0),
fort=0,1, 2 . do

Sample {X) /\}/\ P {Data Sampling} If we use better data for training,
pt+1) — (9<t> {X(t)xh p()- {Generalized Pol- can we obtain better performance?
icy Iteration} Yes!
P/(CH) (Pl(\t),{?((t)/\})‘ P(t)) {Data Distribution
Iteration}
end for
Theorem 1 (First-Order Optimization with Superior Theorem 2 (Second-Order Optimization with Su-
Target). Under assumptions (1) (2) (3), we have perior  Improvement). Under  assumptions (1)
Lr(PYTY,00D) = B, _ew[Lr(A00TD)] > @) @, we have E, po[GLT(A60)] >
E, P(”[ET( 9§t+1))] =£T(P;(\\t),9(t+1))_ EANPI(\t)[G"ET()\,Hg\tH))], more specifically,

E, oo LA 08 ) — Ly (A, 60

> E, o[Lr(\ 00 — L7 (2, 00Y)]

AP [

Better Data facilitate Better RL training!
But How? -> LBC



Methodology-Behavior Control Formulation

Definition 3.1 (Behavior Space Construction). Considering the RL problem that behaviors | are
generated from some policy model(s). We can acquire a family of realizable behaviors by applying a
family of behavior mappings Fg to these policy model(s). Define the set that contains all of these
realizable behaviors as the behavior space, which can be formulated as:

M ~ J{peny = Fyp(Pn)|@ € ©,h € H,vp € ¥}, for individual behavior mapping
LY {reny = Fy(Pou)|yp € ¥}, for hybrid behavior mapping

)
1 Assumption 1

M _ [{#nyp = Fyp(®Pn)lh € H,9p € ¥}, for individual behavior mapping @)
Hw {pr1, = Fop(Pu)|tp € ¥}, for hybrid behavior mapping

Definition 3.2 (Behavior Selection). Behavior selection can be formulated as finding a optimal selec-
tion distribution Py . to select the behaviors p from behavior space Me u,w and maximizing

some optimization target Lp, wherein Lp is the optimization target of behavior selection:

* ® —
PMo u o = argmaxLp 3)
PM@,H,\P

1 Assumption 1

Priy o = argmaxLp

My, »



Methodology-Behavior Control

Proposition 1 (Policy Model Selection). When Fy, is a deterministic and individual behavior
mapping for each actor at each training step (wall-clock), e.g., Agent57, the behavior for each actor
can be uniquely indexed by h, so equation|3 can be simplified into

Lp =Enpy [Vi, +c V'], (©6)

where Py is a selection distribution of h € H = {hy,...,hx}. For each actor, the behavior is
generated from a selected policy model ®y,; with a pre-defined behavior mapping F.

Agent57, NGU

Proposition 2 (Behavior Mapping Optimization). When all the policy models are used to generate
each behavior, e.g., pyy, = Fy(Po n) for single policy model cases or iy = Foy(Po, by s -y Poy,hy)
for N policy models cases, each behavior can be uniquely indexed by F,, and equation|§ can be
simplified into:

Lp =Eyupy |V +c-VIP|, (M

where Py is a selection distribution of ¢ € W.

LBC (Ours)



Methodology-Hybrid Behavior Mapping

1. Generalized Policy Selection. Adjusting the contribution proportion of
each learned policy for the behavior via an importance weight

2. Policy-Wise Entropy Control. Controlling the entropy of each policy via
an entropy control function f.

3. Behavior Distillation from Multiple Policies. Distilling the entropy-
controlled policies into a behavior policy according to the proportion of
contribution and a behavior distillation function g.

Miu,o= {9(fr,(®hy);s - (Bhay) 1, - -+ o) [ € T}

To control the behavior, the only thing we have to do is to optimize ¢ =
(11, w1 ... Ty, Wy) € ¥ with a meta-controller since f, g, N, H are
predefined.
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Experiment
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Human Normalized Score on Atari-57 Games
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Figure 6: Comparison with Muzero. Human-normalized scores per game at
different interaction budgets, sorted from highest to lowest.




Conclusion and Research Map

Behavioral Control in RL
1. GDI: Theoretical Guarantee. Behavioral control in single policy RL. (Done)
2. LBC: General way. Behavior control in population-based RL. (Done)

3. What Next?

Can We Unify the Behavior Control in RL? Yes!
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