
Delving into Semantic Scale Imbalance

Model bias triggered by long-tailed data has been 
widely studied. However, measure based on the 
number  of  samples  cannot  expl ica te  three 
phenomena simultaneously: 

Given enough data, the classification performance 
gain is marginal with additional samples.

Classification performance decays precipitously 
as the number of training samples decreases when 
there is insufficient data. 

Model trained on sample-balanced datasets still 
has different biases for different classes. 

Motivation

 Our key contributions

We propose the novel idea of leveraging the 
volume of manifold to measure the semantic scale. 
It is also innovative to find that the semantic scale 
has the marginal effect, and that the semantic 
scale of the dataset is highly consistent with 
model performance in terms of trends.

We in t roduce  and  def ine  semant i c  sca l e 
imbalance, aiming to measure the degree of class 
imbalance by semantic scale rather than sample 
number, which reveals a new perspective for the 
study of class imbalance problem. Experiments 
show that semantic scale imbalance is prevalent 
in the dataset and can more accurately reflect 
model bias that affects model performance.

Semantic-scale-balanced learning is proposed to 
mitigate model bias, which includes a general 
loss improvement scheme and a dynamic re-
weighting training framework that overcomes the 
challenge of calculating semantic scales in real-
t i m e  d u r i n g  i t e r a t i o n s .  C o m p r e h e n s i v e 
experiments demonstrate that semantic-scale-
balanced learning is applicable to a variety of 
datasets and achieves significant performance 
gains on multiple vision tasks.

Quantification of Semantic Scale Marginal Effect of Semantic Scale
The volume of the space spanned by  
can be can be written as:

The semantic scales 
of multiple Stanford 
point cloud manifolds 
with different sizes 
are  calcula ted and 
plotted in figure. Let 
the center point  of 
bunny be C(bunny). 

As the object manifold is scaled up, the calculated 
volume then increases slowly and monotonically, 
indicating that our method can accurately measure the 
re la t ive  s i ze  o f  the  man i fo ld  vo lume  and  i s 
numerically stable, an advantage that will help 
mitigate the effects of noisy samples.

The marginal effect describes 
that the feature richness will 
g r adua l l y  s a t u r a t e  a s  t he 
number of samples increases. 
Figure illustrates that as the 
number of samples increases, 
the semantic scale S' measured 
by sample volume gradually 
saturates, which indicates that 
the quantitative measurement 
of semantic scale is reasonable.

We train ResNet-18 and ResNet-34 on each of the training 
sets in Table, and the sum of the semantic scales for all 
classes and the corresponding top-1 accuracy are shown in 
Figure. We are pleasantly surprised to find that when the 
semantic scale increases rapidly, the model performance 
improves swiftly with it, and when the semantic scale 
becomes saturated, the improvement is small.

Semantic Scale Imbalance on 
Long-Tailed Data

Previous studies have roughly attributed model 
bias to the imbalance in the number of samples. 
The experimental results in the first row of Figure 
show that even though the number of MNIST-
LT-1 is similar to that of MNIST-LT-2, the class-
wise accuracy on MNIST-LT-1 is closer to that 
on MNIST, just as their semantic scales are also 
more similar.

Figure indicate that 
models on certain 
classes with fewer 
samples outperform 
those on classes with 
more samples, and 
that the semantic 
s c a l e  S  r e f l e c t s 
m o d e l  b i a s  m o r e 
accurately.

Semantic Scale Imbalance on 
Non-Long-Tailed Data

Figure demonstrates the model bias not only 
on long-tailed data but also on sample-
balanced data.Usually, the classes with smaller 
s eman t i c  sca l e s  have  l ower  accu r a c i e s . 
Depending on the size of the semantic scale, it 
can make it possible for the weaker and dominant 
classes to be well differentiated. It should be 
noted that the weaker classes are not random, and 
experiments in Figure show that the models 
always perform worse on the same classes. 

I n  s u m m a r y , 
semantic scale 
imbalance can 
represent model 
b i a s  m o r e 
genera l ly  and 
appropriately.

Dynamic Semantic-Scale-Balanced Learning
Dynamic Semantic-Scale-Balanced Loss

Dynamic Re-Weighting Training Framewor

In the first stage, all the features and labels generated by the 1st epoch are stored in Q, but they 
cannot be used directly to calculate semantic scales due to the large drift of historical features 
from current features in the early stage.
The second stage corresponds to epoch 2 to epoch n. At each iteration, the oldest mini-batch 
features and labels in Q are removed and those generated by the current iteration are stored. The 
goal is to continuously update the features in Q until the feature drift is small enough. We set n 
to 5 in our experiments, and the original loss function is used in the first two stages. 

The third stage corresponds to epoch>n. At each iteration, the semantic scales are calculated 
using the features in Q after updating Q, and the original loss is re-weighted. 

Experiments

See more in the paper！


