Delving into Semantic Scale Imbalance

Model bias triggered by long-tailed data has been
widely studied. However, measure based on the
number of samples cannot explicate three
phenomena simultaneously:

Given enough data, the classification performance
gain is marginal with additional samples.

Classification performance decays precipitously
as the number of training samples decreases when
there is insufficient data.

Model trained on sample-balanced datasets still
has different biases for different classes.

Our key contributions

We propose the novel idea of leveraging the
volume of manifold to measure the semantic scale.
It is also innovative to find that the semantic scale
has the marginal effect, and that the semantic
scale of the dataset is highly consistent with
model performance in terms of trends.

We introduce and define semantic scale
imbalance, aiming to measure the degree of class
imbalance by semantic scale rather than sample
number, which reveals a new perspective for the
study of class imbalance problem. Experiments
show that semantic scale imbalance is prevalent
in the dataset and can more accurately reflect
model bias that affects model performance.

Semantic-scale-balanced learning is proposed to
mitigate model bias, which includes a general
loss improvement scheme and a dynamic re-
weighting training framework that overcomes the
challenge of calculating semantic scales in real-
time during iterations. Comprehensive
experiments demonstrate that semantic-scale-
balanced learning is applicable to a variety of
datasets and achieves significant performance
gains on multiple vision tasks.

Dynamic Semantic-Scale-Balanced Learning

Dynamic Semantic-Scale-Balanced Loss

Experiments
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Table 2: Top-1 Acc(%) on ImageNet-LT and iNaturalist2018. We use ResNext-50 (61) on ImageNet- Table 4: Results on CUB-2011 and Cars196. We evaluate the model performance with Recall@K

LT and ResNet-50 (14) on iNaturalist2018 as the network backbone for all methods. And we
conduct model training with the SGD optimizer based on batch size 256 (for ImageNet-LT) / 512 (for

(36) and Normalized Mutual Information (NMT) (41)).
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In the first stage, all the features and labels generated by the 1st epoch are stored in Q, but they
cannot be used directly to calculate semantic scales due to the large drift of historical features

from current features in the early stage.

The second stage corresponds to epoch 2 to epoch n. At each iteration, the oldest mini-batch
features and labels in Q are removed and those generated by the current iteration are stored. The

goal is to continuously update the features in Q until the

to 5 in our experiments, and the original loss function is used in the first two stages.

The third stage corresponds to epoch>n. At each iteration, the semantic scales are calculated

using the features in Q after updating Q, and the original

Table 3: Comparison on ImageNet and CIFAR-100. On ImageNet, we use random clipping, mixup
(67), and cutmix (66) to augment the training data, and all models are optimized by Adam with
batch size of 512, learning rate of 0.05, momentum of 0.9, and weight decay factor of 0.0005. On
CIFAR-100, we set the batch size to 64 and augment the training data using random clipping, mixup,

Table 10: Comparison of DSB-ST and SoftTriple in terms of memory consumption and training
speed. The speed is measured by the average number of iterations per second. The additional video
memory consumption due to our method is almost negligible.

and cutmix. An Adam optimizer with learning rate of 0.1 (linear decay), momentum of 0.9, and GPU Memory Training speed
weight decay factor of 0.005 is used to train all networks. Dataset SoftTriple DSB-ST SoftTriple DSB-ST
ImageNet Top-1 Acc(%) CIFAR-100 Top-1 Acc(%) T . .
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ResNei-18 701 12 11 756 769 113 Cars196 3491 MB 4097 MB 20.21 it/s 18.95 it/s
ResNet-34 73.5 743 +0.8 76.8 71.9 +1.1 CUB-2011 3225 MB 3647 MB 21.95it/s 18.58 it/s
ResNet-50 76.0 76.8 +0.8 77.4 783 +0.9 o1 5 . .
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1 _ 3 SE-ResNet-50 (18) 71.6 78.4 +0.8 78.6 79.3 +0.7 .
loss is re-weighted. ResNeXt-101 (61 78.8 797 +0.9 77.8 788 +1.0 See more in the paper!




