DAG matters! Gflownets Enhanced Explainer for Graph Neural Networks Wengian Li, Yinchuan Li, Zhigang Li, Jianye HAO, Yan Pang

Overview

- Uncovering rationales behind predictions of GNNs focus on selecting a subgraph through combinatorial optimizations.
- Turn the combinatorial optimization problem into a step-by-step generative problem, aiming to learn the distribution of subgraphs.
- Construct the Directed Acyclic Graph structure for sequential modeling.
- Dynamically check cut vertices to check the connectivity of the subgraph, efficiently explore parent states for the GFlowNets structure.

Problem Statement

What problem the post-hoc GNN explanation solves

- Given an instance, a node v or a graph G, the goal of GNN explanation is to identify a subgraph $G_S = (\mathcal{V}_s, \mathcal{E}_s)$ and the associated features $X_s = \{x_j | v_j \in G_s\}$ that are important for the GNN prediction $Y_i = \Phi(v_i)$ or $Y_{g_i} = \Phi(G_i)$, where g_i is a graph instance, Φ is the trained GNN model.
- The objective is to maximization the mutual information: $\max MI(Y, G_S) = H(Y) - H(Y|G_S)$

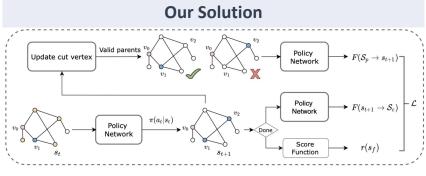
Motivation of GFlowExplainer

- Existing RL Solution 1: Reward maximization
 Issue: Local optimum in combinatorial optimizations
 Motivation: TD-like flow matching condition
- Existing RL Solution 2: Sequential modeling
 Issue: Computational expensive pretraining strategy
 Motivation: Consider graph as an ordered set, construct DAG structure

High-level Framework of GFlowExplainer

- GFlowExplainer consists of a tuple (S, A), S is a finite set of states, A is the action set consisting transitions: $a_t: s_t \to s_{t+1}$.
- Consider G_S as a compositional object.
- Starting from an empty graph, different from traditional optimization problems maximizing the mutual information, the objective is to construct **TD-like flow matching condition**, to obtain a generative forward policy $\pi(a_t|s_t)$ so that $P(Y,G_S) \propto r(Y,G_S)$.

The probability of generating a subgraph is proportional to its reward



Aggregate information for the graph structured data

- Feature representation $x'_i = [x_i, \mathbb{I}_{v_i = v_0}, \mathbb{I}_{\{v_i \in G_s(s_t)\}}], X'_t = [x'_i]_{\forall v_i \in G_s(s_t) \cup \mathcal{N}(s_t)}$
- Combine information $H_t^{(0)} = \Theta_1 X'_t$, $H_t^{(l+1)} = (1-\alpha)\hat{A}H_t^{(l)} + \alpha H_t^{(0)}$
- Improve representation $\overline{H_t}(v_i) = MLP(H_t^L(v_i); \Theta_2), v_i \in G_s(s_t) \cup \mathcal{N}(s_t)$

Self-attention mechanism to avoid generating large subgraphs

$$\gamma_t(v_i) = \frac{\exp(\theta_1^T H_t(v_i))}{\sum_{v_j \in \mathcal{N}(s_t)} \exp(\theta_1^T H_t(v_j))}, v_i \in \mathcal{N}(s_t)$$
$$H_t(stop) = \sum_{v_i \in G_s(s_t) \cup \mathcal{N}(s_t)} \gamma_t(v_i) H_t(v_i)$$

Training Objective for flow modeling : Inflow = Outflow

$$\mathcal{L}(\tau) = \sum_{s_{t+1} \in \tau} \left(\sum_{T(s_t, a_t) = s_{t+1}} F(s_t, a_t) - \mathbb{I}_{s_{t+1} = s_f} r(s_f, Y) - \mathbb{I}_{s_{t+1} \neq s_f} \sum_{a_{t+1} \in \mathcal{A}} F(s_{t+1}, a_{t+1}) \right)^2$$

Experiment setup

Datasets:

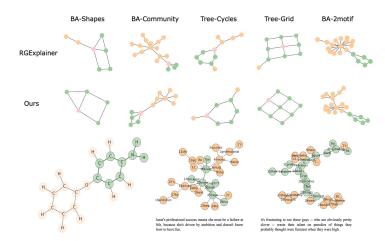
- Node classification task : BA-shapes, BA-Community, Tree-Cycles/Tree-Grid
- Graph classification task : BA-2motifs, Mutagenicity, Graph-SST2

Baselines: GNNExplainer, PGExplainer, DEGREE, RG-Explainer **Metrics:** AUC score (quantitative analysis), visualization (qualitative analysis)

Experiment

	Node Classification				Graph Classification	
	BA-Shapes	BA-Community	Tree-Cycles	Tree-Grid	BA-2motifs	MUTAG
GNNExp	$0.742 {\pm} 0.006$	$0.708 {\pm} 0.004$	$0.540 {\pm} 0.017$	$0.714 {\pm} 0.002$	$0.499 {\pm} 0.001$	0.498 ± 0.002
PGExp	$0.974 {\pm} 0.005$	$0.884 {\pm} 0.020$	$0.574 {\pm} 0.021$	$0.673 {\pm} 0.004$	$0.133 {\pm} 0.045$	0.843 ± 0.084
DEGREE	$0.993 {\pm} 0.005$	$0.957 {\pm} 0.010$	$0.902 {\pm} 0.022$	$0.925 {\pm} 0.040$	$0.755 {\pm}~0.135$	$0.773 {\pm} 0.02$
RGExp (NoPretrain)	$0.983 {\pm} 0.021$	$0.684 {\pm} 0.012$	$0.500{\pm}0.000$	$0.500{\pm}0.000$	$0.503 {\pm} 0.011$	$0.623 {\pm} 0.02$
RGExp	$0.985 {\pm} 0.013$	$0.858 {\pm} 0.021$	$0.787 {\pm} 0.099$	$0.927 {\pm} 0.030$	$0.615 {\pm} 0.029$	$0.832 {\pm} 0.04$
Ours	$0.999 {\pm} 0.000$	$0.938 {\pm} 0.019$	$0.964 {\pm} 0.028$	$0.982{\pm}0.011$	$0.854{\pm}0.016$	$0.882{\pm}0.02$
Improve	1.4%	-2.0%	6.8%	5.9%	13.1%	4.6%

Our method improves the SOTA method by 5% over all !



Our method could identify ground truth structures effectively without many irrelevant edges.

Have better generalizations in the inductive setting. Ablation experiments show the superiority of proposed DAG structure.