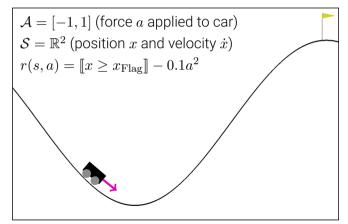
Pink Noise Is All You Need

Colored Noise Exploration in Deep Reinforcement Learning

Onno Eberhard¹ · Jakob Hollenstein^{2,1} · Cristina Pinneri^{1,3} · Georg Martius¹

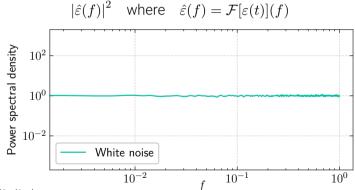
¹Max Planck Institute for Intelligent Systems


²Universität Innsbruck ³ETH Zürich

ICLR 2023 · Kigali, Rwanda

Introduction

- ► Setting: Reinforcement learning for continuous control
- ► Mountain-car problem: Why is exploration necessary?



White Noise Exploration

- ▶ Usual method for exploration: add some noise ε_t to actions
- ▶ If $\varepsilon_t \sim \mathcal{N}(0, I)$ independently at every time step, then $\varepsilon_{1:T}$ is called **white noise**
 - $\blacktriangleright\,$ Used as default by many algorithms: TD3, SAC, MP0, ...

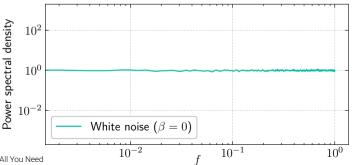
White Noise Exploration

- ▶ Usual method for exploration: add some noise ε_t to actions
- ▶ If $\varepsilon_t \sim \mathcal{N}(0, I)$ independently at every time step, then $\varepsilon_{1:T}$ is called **white noise**
 - ▶ Used as default by many algorithms: TD3, SAC, MPO, ...
- ▶ The **power spectral density** (PSD) is defined for any signal $\varepsilon(t)$ as

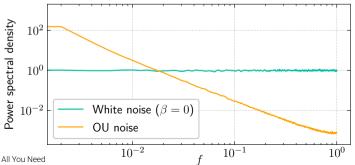
Temporal Correlation

- ▶ White noise has no temporal correlation ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$)
- ► This makes exploration very slow, simple tasks like Mountain-car challenging

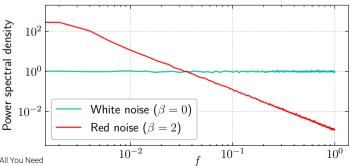
Temporal Correlation

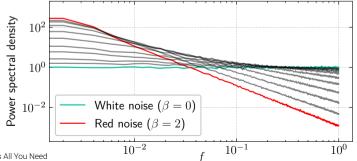

- ▶ White noise has no temporal correlation ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$)
- ► This makes exploration very slow, simple tasks like Mountain-car challenging
- ▶ Simple fix: Use a temporally correlated noise process $(cov[\varepsilon_t, \varepsilon_{t'}] > 0)$
- ► Popular choice: Ornstein-Uhlenbeck (OU) noise

Temporal Correlation


- ▶ White noise has no temporal correlation ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$)
- ► This makes exploration very slow, simple tasks like Mountain-car challenging
- ▶ Simple fix: Use a temporally correlated noise process $(cov[\varepsilon_t, \varepsilon_{t'}] > 0)$
- ► Popular choice: Ornstein-Uhlenbeck (OU) noise
- lacktriangle Problem: Very strong temporal correlation ightarrow poor performance if not needed
- ▶ Idea: Use intermediate temporal correlation to get best of both worlds

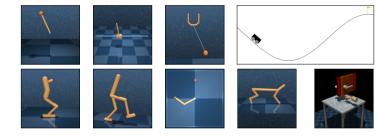
- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- lacktriangle Color parameter eta controls strength of temporal correlation


- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- lacktriangle Color parameter eta controls strength of temporal correlation
- ▶ White noise is colored noise with $\beta = 0$

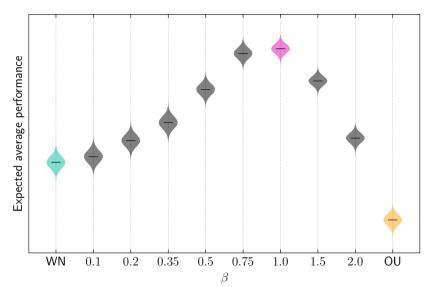

- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- ightharpoonup Color parameter β controls strength of temporal correlation
- ▶ White noise is colored noise with $\beta = 0$
- ▶ OU noise is related to red noise (CN with $\beta = 2$)

- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- lacktriangle Color parameter eta controls strength of temporal correlation
- ▶ White noise is colored noise with $\beta = 0$
- ▶ OU noise is related to red noise (CN with $\beta = 2$)

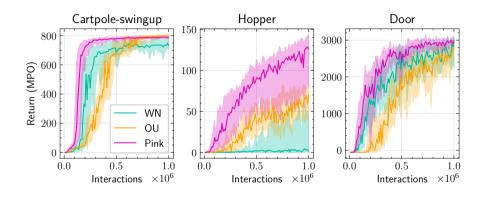
- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- lacktriangle Color parameter eta controls strength of temporal correlation
- ▶ White noise is colored noise with $\beta = 0$
- ▶ OU noise is related to red noise (CN with $\beta = 2$)
- lacktriangle Colored noise with intermediate correlation ($\beta \in [0,2]$) is cheap to generate



- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- lacktriangle Color parameter eta controls strength of temporal correlation
- ▶ White noise is colored noise with $\beta = 0$
- ▶ OU noise is related to red noise (CN with $\beta = 2$)
- ▶ Colored noise with intermediate correlation ($\beta \in [0,2]$) is cheap to generate


Experiments

▶ We perform experiments on a number of benchmark tasks using MPO and SAC



- ► Measure **average performance** (mean normalized performance across all tasks)
 - ► Default action noise should work well everywhere

Results

Results

- ▶ Pink noise works well on **all** environments we tested
- ► Not true for white noise or OU noise!

Pink Noise

- lacktriangle Other experiments: β -schedules, random β selection, bandit β selection
- ► Pink noise performed better than all these methods

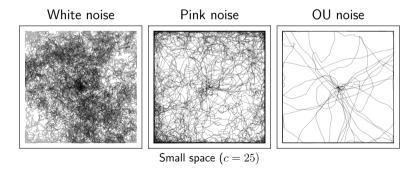
Pink Noise

- \blacktriangleright Other experiments: β -schedules, random β selection, bandit β selection
- ► Pink noise performed better than all these methods

Why does pink noise work so well as a default?

- ► Works very well on some environments
- ► Works well on all environments

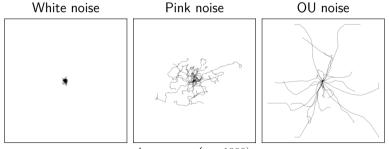
► Simple 2-dimensional "bounded integrator" environment:


$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$

▶ Parameterized by its size (area = $4c^2$)

► Simple 2-dimensional "bounded integrator" environment:

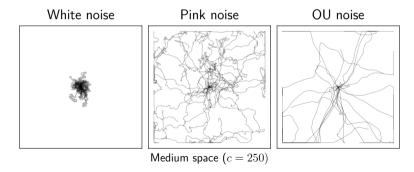
$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$


▶ Parameterized by its size (area = $4c^2$)

► Simple 2-dimensional "bounded integrator" environment:

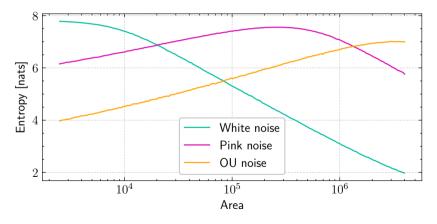
$$\boldsymbol{s}_{t+1} = \operatorname{clip}(\boldsymbol{s}_t + \boldsymbol{a}_t, -c\boldsymbol{1}, +c\boldsymbol{1})$$

▶ Parameterized by its size (area = $4c^2$)



Large space (c=1000)

► Simple 2-dimensional "bounded integrator" environment:


$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$

ightharpoonup Parameterized by its size (area = $4c^2$)

- ► Measure exploration by estimating state-visitation entropy
- ► Repeat for a large range of environment sizes

- ► Measure exploration by estimating state-visitation entropy
- ► Repeat for a large range of environment sizes

The Power of Pink

- ► Very similar results on a second simplified environment
- ▶ Pink noise is **general**: less sensitive to the environment parameterization
- ► Explains average performance results (benchmark experiments)
 - lacktriangledown Many different tasks with different preferences ightarrow general noise preferable

The Power of Pink

- Very similar results on a second simplified environment
- ▶ Pink noise is **general**: less sensitive to the environment parameterization
- ► Explains average performance results (benchmark experiments)
 - lacktriangle Many different tasks with different preferences ightarrow general noise preferable

Takeaway

► Try pink noise as the default action noise pip install pink-noise-rl

Thank you!

https://bit.ly/pink-noise-rl

More Info: