Ask Me Anything A Simple Strategy for Prompting Language Models

Arora, Narayan, Chen, Orr, Guha, Bhatia, Chami, Sala and Ré, **International Conference for Learning Representations** May 2023

Ask Me Anything (AMA) enables:

A 10.2 \pm 6.1% absolute (21.4 \pm 11.2% relative) performance improvement over the few-shot baseline in evaluations on 14 unique language models spanning 5 orders of magnitude in model size (125M - 176B) and four families of models:

on **15 tasks** used in the original GPT-3 paper!

ffiti artist Bas to believed to b bohind [...]

Wizene Certinels

Yas

Emergent properties of recent language models

Language models are models trained on **broad data** (generally using self-supervision at scale) that can be adapted to a **wide range of downstream tasks**. [1]

[1] Bommasani, Hudson, Altman, Arora, von Arx, Bernstein, Bohg, Bosselut, Brunskill et al., On the Opportunities and Risks of Foundation Models. 2021.

How can we use recent language models?

Prior: full-model and parameter-efficient fine-tuning, with one model per task

Recent models display in-context learning abilities: they can be controlled by prompts, to support many task types and languages with no additional training

In-context Learning is Amazing!

Photo Credit Dalle-2. "An Astronaut Riding a Horse in a Photo-Realistic Style"

- We (ML and non-ML experts) can express our goals to models in natural language!
- We can build apps in hours that would have taken years!
- Learned representations reduce the manual engineering effort to capture many variations in machine learning pipelines.

Ask Me Anything (AMA)

AMA PROMPTING

Input Example

Is the following claim True or False given the context?

Context: John and his friends went to the theater and saw Jurassic Park. **Claim:** John went to the park. Answer:

Model Input

Prompt Chain

Model Output

Run a collection of prompt()-chains where the LLM will generate inputs to question and answer

Prompt Chain 1

Prompt Chain 2

Prompt Chain 3

Write the claim as a yes/no question.

Claim: Jack camped with Mark **Question:** Did Jack camp with Mark? **Claim:** the test was not hard **Question:** Was the test hard?

Claim: John went to the park. Question:

Did John go to the park?

question() prompt

AMA aggregates multiple decent, yet ultimately noisy prompts using weak-supervision to surpass OpenAI's few-shot 175B parameter GPT-3 on 15 popular benchmark tasks with an open-source 6B parameter model!

answer() prompt

Ask Me Anything (AMA)

Three key questions. Across tasks and language models:

- properties of *effective* prompts.
- How do we generate those effective prompts efficiently at scale? (2)
- 3 reliably?

How do we get prompts that are of decent-quality? We need to understand

How do we aggregate the predictions generated by the different prompts

We Beat GPT-3 on their Benchmarks!

Model	Neo Few-Shot	Neo (QA)	Neo (QA + WS)	GPT-3 Few-Shot
# Params	6B	6B	6B	175B
	Natura	al Language U	Inderstanding	
BoolQ	$66.5_{(3)}$	64.9	$67.2_{\pm 0.0}$	77.5 (32)
CB	$25.0_{(3)}$	83.3	$83.9_{\pm 0.0}$	82.1(32)
COPA	$77.0_{(3)}$	58.2	$84.0_{\pm 0.0}$	92.0 ₍₃₂₎
MultiRC	$60.8_{(3)}$	58.8	$63.8_{\pm 0.0}$	74.8 (32)
ReCoRD	$75.6_{(3)}$	74.5	$74.4_{\pm 0.0}$	89.0 ₍₃₂₎
RTE	$58.8_{(3)}$	61.7	$75.1_{\pm 0.0}$	$72.9_{(32)}$
WSC	$36.5_{(3)}$	74.7	77 . $9_{\pm 0.0}$	75.0(32)
WiC	$53.3_{(3)}$	59.0	$61.0_{\pm 0.2}$	$55.3_{(32)}$
Natural Language Inference				
ANLI R1	$32.3_{(3)}$	34.6	$37.8_{\pm 0.2}$	$36.8_{(50)}$
ANLI R2	$33.5_{(3)}$	35.4	$37.9_{\pm 0.2}$	$34.0_{(50)}$
ANLI R3	$33.8_{(3)}$	37.0	$40.9_{\pm 0.5}$	$40.2_{(50)}$
StoryCloze	$51.0_{(3)}$	76.3	$87.8_{\pm 0.0}$	87.7(70)
		Classificat	ion	
AGNews	$74.5_{(3)}$	83.7	$86.4_{\pm 0.0}$	$79.1_{(8)}$
Amazon	$62.5_{(3)}$	66.8	$68.2_{\pm 0.0}$	$41.9_{(8)}$
DBPedia	$50.7_{(3)}$	81.4	$83.9_{\pm 0.0}$	$83.2_{(8)}$
SST	$64.9_{(3)}$	94.5	$95.7_{\pm 0.0}$	$95.6_{(8)}$
Question-Answering				
DROP	$32.3_{(3)}$	51.0	$51.6_{\pm 0.0}$	$36.5_{(20)}$
NQ	$13.7_{(3)}$	19.7	$19.6_{\pm 0.0}$	29.9 ₍₆₄₎
RealTimeQA	$34.7_{(3)}$	34.7	$36.0_{\pm 0.0}$	$35.4_{(1)}$
WebQs	$29.1_{(3)}$	44.2	$44.1_{\pm 0.0}$	$41.5_{(64)}$

With an open-source model that's 1/30th the size!

What makes for an effective prompt?

Open-ended questions make for an effective prompt format.

We group the results in the GPT-3 paper by the promptformat used for the task.

Scaling from GPT3-6.7B to 175B, the relative gain is far lower on open-ended formats vs. restricted formats:

Cloze

Context: John a friends went to t and saw Jurassi Claim: John wei

Answer:

Yes/No QA

Wh-QA

and his
the theater
ic Park.
nt to the

Context: John and his friends went to the theater and saw Jurassic Park. **Question**: Did John go to the park? Answer:

Context: John and his friends went to the theater and saw Jurassic Park. Question: Where did John go? Answer:

Open-ended question formats

Context: John and his friends went to the theater and saw Jurassic Park. **Claim:** Jobn went to the park. True or False? Answer:

Restrictive

Measuring the effect of prompt-reformatting

Model	Neo Few-Shot	Neo (QA)	Neo (QA + WS)	GPT-3 Few-Shot	
# Params	6B	6B	6B	175B	
	Natura	l Language U	nderstanding		
BoolQ	$66.5_{(3)}$	64.9	$67.2_{\pm 0.0}$	77.5 ₍₃₂₎	
CB	$25.0_{(3)}$	83.3	$83.9_{\pm 0.0}$	82.1(32)	
COPA	$77.0_{(3)}$	58.2	$84.0_{\pm 0.0}$	92.0 (32)	
MultiRC	$60.8_{(3)}$	58.8	$63.8_{\pm 0.0}$	74.8 ₍₃₂₎	
ReCoRD	$75.6_{(3)}$	74.5	$74.4_{\pm 0.0}$	89.0 ₍₃₂₎	
RTE	$58.8_{(3)}$	61.7	$75.1_{\pm 0.0}$	72.9(32)	
WSC	$36.5_{(3)}$	74.7	$77.9_{\pm 0.0}$	75.0(32)	
WiC	$53.3_{(3)}$	59.0	$61.0_{\pm 0.2}$	55.3(32)	
Natural Language Inference					
ANLI R1	$32.3_{(3)}$	34.6	$37.8_{\pm 0.2}$	$36.8_{(50)}$	
ANLI R2	$33.5_{(3)}$	35.4	$37.9_{\pm 0.2}$	34.0(50)	
ANLI R3	$33.8_{(3)}$	37.0	$40.9_{\pm 0.5}$	$40.2_{(50)}$	
StoryCloze	$51.0_{(3)}$	76.3	$87.8_{\pm 0.0}$	87.7(70)	
		Classificat	ion		
AGNews	$74.5_{(3)}$	83.7	$86.4_{\pm 0.0}$	$79.1_{(8)}$	
Amazon	$62.5_{(3)}$	66.8	$68.2_{\pm 0.0}$	$41.9_{(8)}$	
DBPedia	$50.7_{(3)}$	81.4	$83.9_{\pm 0.0}$	$83.2_{(8)}$	
SST	$64.9_{(3)}$	94.5	$95.7_{\pm 0.0}$	$95.6_{(8)}$	
Question-Answering					
DROP	$32.3_{(3)}$	51.0	$51.6_{\pm 0.0}$	$36.5_{(20)}$	
NQ	$13.7_{(3)}$	19.7	$19.6_{\pm 0.0}$	29.9 ₍₆₄₎	
RealTimeQA	$34.7_{(3)}$	34.7	$36.0_{\pm 0.0}$	$35.4_{(1)}$	
WebQs	$29.1_{(3)}$	44.2	$44.1_{\pm 0.0}$	$41.5_{(64)}$	

Across 20 tasks, reformatting to open-ended prompts results in a:

23% performance improvement over the few-shot baseline

Investigating the effectiveness of open-ended questions

GPT-J-6B is trained on 300B token Pile corpus At a class-conditional level, there are larger 2 [1]. On a 2% random subsample of The Pile: imbalances in performance using zero-to-few shot prompting vs. AMA. Class-imbalances in the Pile • Question-patterns are more frequent appear to be reflected in performance.

- There are imbalances in the frequencies of "yes vs. no", "true vs. false"

Category	Word Counts
Restrictive Prompt Words	true: 69658
1	false: 41961
	neither: 20891
	yes: 12391
	no: 452042
	maybe: 36569
Yes-No	Is: 3580578
Question Prompt Words	Was: 1926273
_	Did: 200659
	Do: 394140
	Are: 1441487
	Will: 619490
Open-Ended	When: 583237
Question Prompt Words	Where: 303074
-	Why: 97324
	Who: 417798
	What: 548896
	How: 298140

[1] Gao, Biderman, Black, Golding, Hope, Foster, Hang, He, That, Nabeshima, Presser, Leahy et al., The Pile: An 800GB Dataset of Diverse Text for Language Modeling, 2020.

Benchmark	Output Space	F1-Score 0-shot	F1-Score Few-shot two in-context exam- ples per class	F1-Score AMA (single prompt-ch with no aggregation
CB	True,	True: 36.8	True: 55.6	True: 95.7
	False,	False: 0.0	False: 0.0	False: 92.3
	Neither	Neither: 21.7	Neither: 12.5	Neither: 28.6
RTE	True,	True: 40.4	True: 70.6	True: 58.5
	False	False: 58.3	False: 31.3	False: 64.9
WSC	Yes, No	Yes: 53.5	Yes: 53.5	Yes: 61.3
		No: 0.0	No: 13.7	No: 78.2
		Rest	rictive Op	en-Endeo
		Pro	mpts F	Prompts

prompt formats at scale?

How can we reformat inputs to the effective

Prompt-chains With task-agnostic operations that recursively use the LM.

Generating the "perfect prompt" is challenging...

So we produce multiple prompts-chains to obtain multiple predictions per example, then aggregate over the collection!

To obtain varied prompt-chains:

itext demonstrations	vary question style to Wh
im as a yes/no question.	Write the claim as a question.
alloon popped id the balloon pop? In sets at 7pm oes the sun set at 7pm?	Claim: Jack camped with Mark Question: Who did Jack camp with? Claim: the test was not hard Question: What was not hard?
out_x>	Claim: <input_x> Question:</input_x>

Prior Work Aggregates Using Majority Vote [1, 2]

[1] Jiang et al., How can we know what language models know?, TACL, 2020. [2] Schick and Schütze, It's not just size that matters: Small language models are also few-shot learners, 2021.

Majority Vote tends to do better than using one prompt, but it weights all prompts equally and treats them independently. In practice, the prompts display properties that make these assumptions suboptimal.

Majority Vote is not Reliable

Lowest accuracy

 p_3

question() prompt

2 : 1 Yes : No

answer() prompt

No

Medium accuracy Varied Overall Accuracies across Prompts

Majority Vote is not Reliable

Relatively high quality on "no" class! Poor on "yes". Relatively high quality on "yes" class! Poor on "no". p_3

question() prompt

2 : 1 Yes : No

answer() prompt

No

Decent quality on "yes" and "no" classes Varied Class-Conditional Accuracies across Prompts

Majority Vote is not Reliable

Tend to vote together... Their vote gets "double"-counted

 p_3

question() prompt

answer() prompt

2 : 1 Yes : No

No

Prompt Predictions have Dependencies (Highly Correlated Outputs)

How can we reliably aggregate the predictions?

a score of how "good" each prompt is. We want to answer:

Rather than always giving each voter equal power, we want to model the relationships between them. Viewing each prompt $p \in \mathbb{P}$ as a random variable, we want to model: $y \mid \mathbb{P}(x)$

Majority vote: "No"

[1] Ratner et al., Snorkel: Rapid Training Data Creation with Weak Supervision, 2017.

- Suppose the "votes" on an example x are "yes" by p_1 , "no" by p_2 , and "no" by p_3 . And, suppose we have
 - What is the **probability** that the true label y is "yes"?

How can we reliably aggregate the predictions?

Formally, our objective is to learn $\phi(\cdot)$, the aggregator function, which takes the predictions by $p \in \mathbb{P}$ on input x, expressed as $\mathbb{P}(x)$, and outputs the final prediction \hat{y} :

An edge exists iff the prompts dependent conditioned on y and the other source labels

G = (V, E) models dependencies

Challenge: We don't have labeled data in our setting, so how can we estimate G, Θ ?

[1] Ratner et al., Snorkel: Rapid Training Data Creation with Weak Supervision, 2017.

 Θ are the accuracies for $p \in \mathbb{P}$

Recovering \hat{G} , $\hat{\Theta}$ without labeled data

Label y is unobservable. Let's decompose Σ into its observable O and unobservable S terms:

• Σ_O and Σ_S are available

Key insight: we can use the covariance matrix Σ , i.e. the matrix representing how frequently p_i and p_j predict the same label across inputs our unlabeled dataset $D = \{x_i\}_{i=1}^n$! How?

> • $\Sigma_{O\cup S}$ is our unknown term and it's a function of $\hat{\Theta}$. $E[yp_i]$ is proportional to the accuracy of prompt-chain p_i . If we solve for $\Sigma_{O\cup S}$, we can recover $\hat{\Theta}$!

Evaluating AMA's aggregation strategy

We find that AMA can achieve up to 8.7 points of lift over majority vote, improving reliability!

	# Prompts	Avg	MV	WMV	Pick Best	AMA (no dep)	AMA (WS)
No labels:			\checkmark			\checkmark	\checkmark
		N	atural La	nguage U	nderstanding		
WSC	3	74.7	77.8	77.8	75.0	$77.8_{\pm 0.0}$	$77.8_{\pm0.0}$
WiC	5	59.0	61.3	60.9	60.0	$60.8_{\pm 0.0}$	$\boldsymbol{61.3}_{\pm 0.2}$
RTE	5	61.4	66.0	71.4	62.0	$65.1_{\pm 0.5}$	$\textbf{75.1}_{\pm 0.0}$
CB	3	83.3	82.1	82.1	83.9	$82.1_{\pm 0.0}$	$\textbf{83.9}_{\pm 0.0}$
MultiRC	3	58.8	63.8	63.4	63.4	$63.7_{\pm 0.0}$	$\textbf{63.8}_{\pm 0.0}$
BoolQ	5	64.9	65.9	67.2	68.3	$65.9_{\pm 0.0}$	$67.2_{\pm 0.0}$
COPA	4	58.3	85.0	82.0	82.0	$84.0_{\pm 0.0}$	$84.0_{\pm0.0}$
			Natural	Language	Inference	•	
ANLI R1	5	34.6	37.6	36.1	36.8	$37.4_{\pm 1.0}$	$37.8_{\pm 0.2}$
ANLI R2	5	35.4	36.3	36.0	36.0	$38.7_{\pm 0.4}$	$37.9_{\pm 0.2}$
ANLI R3	5	37.0	39.0	38.4	38.4	$39.6_{\pm 0.9}$	$40.9_{\pm 0.5}$
StoryCloze	6	76.3	87.9	81.8	81.8	$82.2_{\pm 0.0}$	$87.8_{\pm0.0}$
Classification							
DBPedia	3	81.4	84.1	83.9	82.2	$83.9_{\pm 0.0}$	$83.9_{\pm 0.0}$
SST2	3	94.5	95.7	95.7	95.2	$95.7_{\pm0.0}$	$95.7_{\pm0.0}$
Amazon	3	67.0	68.6	68.6	67.3	$68.6_{\pm 0.0}$	$68.6_{\pm 0.0}$
AGNews	3	83.7	86.5	84.2	83.8	$86.4_{\pm 0.0}$	$86.4_{\pm 0.0}$

Examining the importance of AMA prompt reformatting

We take the prompt-templates directly from the GPT-3 paper. We find that applying multiple prompts in these templates and aggregating the predictions is not effective:

> **Aggregation with no AMA: reformatting** prompt-reformatting and aggregation

Model	GPT-J Few-Shot	GPT-J Few-Shot	GPT-J Few-Shot	GPT-J AMA
Aggregation	Average	Majority Vote	Weak Supervision	Weak Supervision
	Na	tural Language Unde	erstanding	
CB	23.8	17.9	50.0	83.9
RTE	53.5	53.1	54.2	75.1
WSC	46.2	38.5	38.5	77.9
COPA	80.0	81.0	81.0	84.0
		Natural Language Inf	ference	
ANLI R1	33.4	33.5	33.5	37.8
ANLI R2	33.2	32.9	32.2	37.9
ANLI R3	35.4	36.5	34.6	40.2
		Classification		
AGNews	70.3	70.7	75.0	86.4
Amazon	61.9	62.4	62.5	68.2

Ask Me Anything (AMA)

AMA PROMPTING

Input Example

Is the following claim True or False given the context?

Context: John and his friends went to the theater and saw Jurassic Park. **Claim:** John went to the park. **Answer**:

Model Input

Prompt Chain

Model Output

Run a collection of prompt()-chains where the LLM will generate inputs to question and answer

Prompt Chain 1

Prompt Chain 2 Prompt Chain 3

Write the claim as a yes/no qu

Claim: Jack camped with Mar **Question:** Did Jack camp with **Claim:** the test was not hard **Question:** Was the test hard?

Claim: John went to the park. **Question:**

Did John go to the park?

question() prompt

Combine the noisy answers using weak supervision

		map to
vestion. k h Mark?	Answer the question from context Context: Joe's birthday was yesterday Question: Was Joe's birthday yesterday? Answer: yes Context: John and his friends went to the theater and saw Jurassic Park Question: Did John go to the park? Answer:	output space False True False False final prediction
	110	

answer() prompt

Evaluations

We Beat GPT-3 on their Benchmarks!

Model	Neo Few-Shot	Neo (QA)	Neo (QA + WS)	GPT-3 Few-Shot		
# Params	6B	6B	6B	175B		
	Natural Language Understanding					
BoolQ	$66.5_{(3)}$	64.9	$67.2_{\pm 0.0}$	77.5 (32)		
CB	$25.0_{(3)}$	83.3	$83.9_{\pm 0.0}$	82.1(32)		
COPA	$77.0_{(3)}$	58.2	$84.0_{\pm 0.0}$	92.0 ₍₃₂₎		
MultiRC	$60.8_{(3)}$	58.8	$63.8_{\pm 0.0}$	74.8 (32)		
ReCoRD	$75.6_{(3)}$	74.5	$74.4_{\pm 0.0}$	89.0 ₍₃₂₎		
RTE	$58.8_{(3)}$	61.7	75 . $1_{\pm 0.0}$	$72.9_{(32)}$		
WSC	$36.5_{(3)}$	74.7	77 . $9_{\pm 0.0}$	$75.0_{(32)}$		
WiC	$53.3_{(3)}$	59.0	$61.0_{\pm 0.2}$	$55.3_{(32)}$		
Natural Language Inference						
ANLI R1	$32.3_{(3)}$	34.6	$37.8_{\pm 0.2}$	$36.8_{(50)}$		
ANLI R2	$33.5_{(3)}$	35.4	$37.9_{\pm 0.2}$	$34.0_{(50)}$		
ANLI R3	$33.8_{(3)}$	37.0	$40.9_{\pm 0.5}$	$40.2_{(50)}$		
StoryCloze	$51.0_{(3)}$	76.3	$87.8_{\pm 0.0}$	$87.7_{(70)}$		
		Classificat	ion			
AGNews	$74.5_{(3)}$	83.7	$86.4_{\pm 0.0}$	$79.1_{(8)}$		
Amazon	$62.5_{(3)}$	66.8	$68.2_{\pm 0.0}$	$41.9_{(8)}$		
DBPedia	$50.7_{(3)}$	81.4	$83.9_{\pm 0.0}$	$83.2_{(8)}$		
SST	$64.9_{(3)}$	94.5	$95.7_{\pm 0.0}$	$95.6_{(8)}$		
Question-Answering						
DROP	$32.3_{(3)}$	51.0	$51.6_{\pm 0.0}$	$36.5_{(20)}$		
NQ	$13.7_{(3)}$	19.7	$19.6_{\pm 0.0}$	$29.9_{(64)}$		
RealTimeQA	$34.7_{(3)}$	34.7	$36.0_{\pm 0.0}$	$35.4_{(1)}$		
WebQs	$29.1_{(3)}$	44.2	$44.1_{\pm 0.0}$	$41.5_{(64)}$		

With an open-source model that's 1/30th the size!

Small models still struggle with long, noisy contexts and factual knowledge

Results Generalize Across Model Types and Sizes

We see lift across model sizes (125M-176B) and type (BLOOM, OPT, Neo) for autoregressive models!

Average 10.2 ± 6.1 (absolute) 21.4 ± 11.2 (relative) across 14 foundation models

Ask Me Anything (AMA)

AMA PROMPTING

Input Example

Is the following claim True or False given the context?

Context: John and his friends went to the theater and saw Jurassic Park. **Claim:** John went to the park. **Answer**:

Model Input

Prompt Chain

Model Output

Run a collection of prompt()-chains where the LLM will generate inputs to question and answer

Prompt Chain 1 Prompt Chain 2

Prompt Chain 3

Write the claim as a yes/no qu

Claim: Jack camped with Mar **Question:** Did Jack camp with **Claim:** the test was not hard **Question:** Was the test hard?

Claim: John went to the park. **Question:**

Did John go to the park?

question() prompt

Combine the noisy answers using weak supervision

		map to
vestion. k h Mark?	Answer the question from context Context: Joe's birthday was yesterday Question: Was Joe's birthday yesterday? Answer: yes Context: John and his friends went to the theater and saw Jurassic Park Question: Did John go to the park? Answer:	output space False True False False final prediction
	110	

answer() prompt

Conclusion

Paper: https://arxiv.org/abs/2210.02441 **Code**: <u>https://github.com/HazyResearch/ama_prompting</u> Blog: <u>https://www.numbersstation.ai/post/ask-me-anything</u>

Contact: <u>simran@cs.stanford.edu</u>

Thanks to my amazing lab mates & advisor & collaborators!

Avanika

Ines

Laurel

Neel

Kush

TOGETHER

Mayee

Thank you!

Contact: simran@cs.stanford.edu Find additional resources at:

Code: <u>https://github.com/HazyResearch/ama_prompting</u> Paper: <u>https://arxiv.org/abs/2210.02441</u> Blogs: <u>https://hazyresearch.stanford.edu/blog</u>