Theoretical Analysis and Method 000000

Experiments 000

When Source-Free Domain Adaptation Meets Learning with Noisy Labels

Li Yi*, Gezheng Xu*, Pengcheng Xu, Jiaqi Li, Ruizhi Pu Charles Ling, A. Ian McLeod, Boyu Wang

University of Western Ontario

ICLR'23 - May 2023 Presenter: Gezheng Xu

Theoretical Analysis and Method

Experiments 000

UDA and SFDA

Unsupervised Domain Adaptation (UDA) $D_S = \{(x_i^S, y_i^S)\}_{i=1}^N + D_T = \{(x_i^T)\}_{i=1}^M$ ╢ $f_T(\boldsymbol{x})$ (a) Clipart: Clipart Images

Source-Free Domain Adaptation (SFDA)

Figure 1: Examples of Office-Home Dataset ¹: $p_s(X, Y) \neq p_T(X, Y)$

¹Source: Venkateswara et al., Deep Hashing Network for Unsupervised Domain Adaptation. CVPR 2017.

Theoretical Analysis and Method

Experiment 000

Label Noise in SFDA

$$\begin{array}{c} D_{S} = \{(\boldsymbol{x}_{i}^{S}, y_{i}^{S})\}_{i=1}^{N} \\ & \downarrow \quad \text{Source Training} \\ f_{S}(\boldsymbol{x}) + D_{T} = \{(\boldsymbol{x}_{i}^{T})\}_{i=1}^{M} \\ & \downarrow \quad \text{Target Adaptation} \\ f_{T}(\boldsymbol{x}) \end{array}$$

- Two-Stage Training process:
 Source Training ⇒ Target Adaptation
- Key Point: Quality of the Pseudo-Labels
 - Domain Shift \Rightarrow Severe Noise in Pseudo Labels
 - Incorrect Neighborhood/Cluster Information
 ⇒ Noise Accumulation (Fig2)

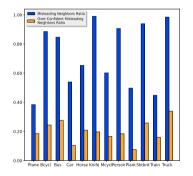


Figure 2: Neighbors Label Noise in SFDA Problem

Theoretical Analysis and Method 000000

Experiment 000

Label Noise in SFDA

$$\begin{array}{c} D_{S} = \{(\boldsymbol{x}_{i}^{S}, y_{i}^{S})\}_{i=1}^{N} \\ & \downarrow \text{ Source Training} \end{array}$$

$$f_{S}(\boldsymbol{x}) + D_{T} = \{(\boldsymbol{x}_{i}^{T})\}_{i=1}^{M} \\ & \downarrow \text{ Target Adaptation} \\ f_{T}(\boldsymbol{x}) \end{array}$$

- Two-Stage Training process: Source Training ⇒ Target Adaptation
- Key Point: Quality of the Pseudo-Labels
 - Domain Shift \Rightarrow Severe Noise in Pseudo Labels
 - Incorrect Neighborhood/Cluster Information
 ⇒ Noise Accumulation (Fig2)

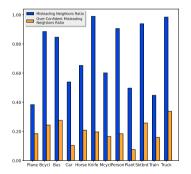


Figure 2: Neighbors Label Noise in SFDA Problem

Theoretical Analysis and Method 000000

Experiment 000

Label Noise in SFDA

$$\begin{array}{c} D_{S} = \{(\boldsymbol{x}_{i}^{S}, y_{i}^{S})\}_{i=1}^{N} \\ & \downarrow \text{ Source Training} \end{array}$$

$$f_{S}(\boldsymbol{x}) + D_{T} = \{(\boldsymbol{x}_{i}^{T})\}_{i=1}^{M} \\ & \downarrow \text{ Target Adaptation} \\ f_{T}(\boldsymbol{x}) \end{array}$$

- Two-Stage Training process: Source Training ⇒ Target Adaptation
- Key Point: Quality of the Pseudo-Labels
 - Domain Shift \Rightarrow Severe Noise in Pseudo Labels
 - Incorrect Neighborhood/Cluster Information
 - \Rightarrow Noise Accumulation (Fig2)

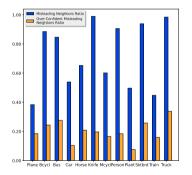


Figure 2: Neighbors Label Noise in SFDA Problem

Theoretical Analysis and Method

Experiments 000

Label Noise in SFDA

 $D_{S} = \{(\boldsymbol{x}_{i}^{S}, \boldsymbol{y}_{i}^{S})\}_{i=1}^{N}$ $\downarrow \text{ Source Training}$ $f_{S}(\boldsymbol{x}) + D_{T} = \{(\boldsymbol{x}_{i}^{T})\}_{i=1}^{M}$ $\downarrow \text{ Target Adaptation}$ $f_{T}(\boldsymbol{x})$

- Two-Stage Training process: Source Training ⇒ Target Adaptation
- Key Point: Quality of the Pseudo-Labels
 - Domain Shift \Rightarrow Severe Noise in Pseudo Labels
 - Incorrect Neighborhood/Cluster Information
 - \Rightarrow Noise Accumulation (Fig2)

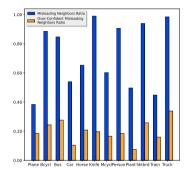


Figure 2: Neighbors Label Noise in SFDA Problem

$\bigcup_{i=1}^{l} Incorrectly Assigned Pseudo Labels = Noisy Labels$

We propose to formulate SFDA as a Learning with Label Noise (LLN) problem.

11 N

Theoretical Analysis and Method 000000

Experiment 000

Learning with Label Noise (LLN)

- Given a set of **NOISY** training data \bar{S}
 - $\bar{S} = (\boldsymbol{x_i}, \bar{y_i})_{i=1}^n$
 - x_i : input data
 - $\bar{y_i}$: possibly corrupted label
 - y_i: ground-truth label
- To learn a Noise-Robust classifier
 ⇒ correctly label the new input data.

Figure 3: Example of Learning with Label Noise on Office-Home Dataset. The first row represents the ground-truth label; the second row is the possibly corrupted label.

Theoretical Analysis and Method 000000 Experiments 000

Current Limitations of LLN methods in SFDA

Different Label Noises in LLN and in SFDA Settings

- Label Noise in LLN (Xiao et al., 2015):
 - generated by human annotators or image search engines
 - mislabeling rate for a sample is **bounded**
 - general LLN methods: Noise-Robust Losses
- Label Noise in SFDA:
 - generated by the source model due to the distribution shift
 - mislabeling rate can be out of control and unbounded

- Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA problems where the label noise has different properties?
- If NOT, what kinds of LLN methods can be helpful?

Theoretical Analysis and Method 000000

Current Limitations of LLN methods in SFDA

Different Label Noises in LLN and in SFDA Settings

- Label Noise in LLN (Xiao et al., 2015):
 - generated by human annotators or image search engines
 - mislabeling rate for a sample is bounded
 - general LLN methods: Noise-Robust Losses
- Label Noise in **SFDA**:
 - generated by the source model due to the distribution shift
 - mislabeling rate can be out of control and unbounded

- Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA problems where the label noise has different properties?
- If NOT, what kinds of LLN methods can be helpful?

Theoretical Analysis and Method 000000

Current Limitations of LLN methods in SFDA

Different Label Noises in LLN and in SFDA Settings

- Label Noise in LLN (Xiao et al., 2015):
 - generated by human annotators or image search engines
 - mislabeling rate for a sample is bounded
 - general LLN methods: Noise-Robust Losses
- Label Noise in **SFDA**:
 - generated by the source model due to the distribution shift
 - mislabeling rate can be out of control and unbounded

- Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA problems where the label noise has different properties?
- If NOT, what kinds of LLN methods can be helpful?

Background and Motivation	Theoretical Analysis and Method	Experiments	Conclusion
0000	●00000	000	00

Unbounded Label Noise in SFDA

Backg 000	round and Motivation O	Theoretical Analysis and Method ○●○○○○	Experiments 000	Conclusion OO
The	oretical Analysis 1 - Unbounded	Label Noise in Source Free D	omain Adaptation	
	Definition: Bounded and Unbound	ded Label Noises		
	With X as the input feature, Y as we define the Bounded Label No	•	s the noisy label,	
	$\Pr\bigl[\tilde{Y}=i\big $	$Y = i, X = x$] > $\Pr[\tilde{Y} = j Y = i, X$	$X = x$], $\forall x \in X, i \neq j$	
	, and the Unbounded Label Noise	e scenario as:		

 $\Pr[\tilde{Y} = j | Y = i, X = \boldsymbol{x}] \to 1, \ \exists S \subset X, \ \forall \boldsymbol{x} \in S, i \neq j$

- **Bounded**: A sample x has the highest probability of being in the correct class (i)
- **Unbounded**: Mislabeling rate of a sample *x* can be very high.

Existence of Unbounded Label Noise In SFDA (Th 3.1)

Under some mild assumptions, there exists a non-empty region $\mathbf{R} \subset X$, for $(x, y) \sim \mathcal{D}_T$, if $x \in \mathbf{R}$, then

 $\Pr[f_S(\boldsymbol{x}) \neq \boldsymbol{y}] \geq 1 - \delta,$

where $\delta \in (0, 1)$ (i.e., $\delta = 0.01$), f_S is the optimal source classifier.

Background and Motivation	Theoretical Analysis and Method	Experiments	Conclusion
0000	○●○○○○	000	00

Theoretical Analysis 1 - Unbounded Label Noise in Source Free Domain Adaptation

Definition: Bounded and Unbounded Label Noises

With X as the input feature, Y as the ground-truth label, and \tilde{Y} as the noisy label, we define the **Bounded Label Noise** scenario as:

$$\Pr[\tilde{Y} = i | Y = i, X = \boldsymbol{x}] > \Pr[\tilde{Y} = j | Y = i, X = \boldsymbol{x}], \ \forall \boldsymbol{x} \in \mathcal{X}, i \neq j$$

, and the Unbounded Label Noise scenario as:

$$\Pr[\tilde{Y} = j | Y = i, X = x] \to 1, \exists S \subset X, \forall x \in S, i \neq j$$

Existence of Unbounded Label Noise In SFDA (Th 3.1)

Under some mild assumptions, there exists a non-empty region $\mathbf{R} \subset \mathcal{X}$, for $(x, y) \sim \mathcal{D}_T$, if $x \in \mathbf{R}$, then

 $\Pr[f_S(\boldsymbol{x}) \neq \boldsymbol{y}] \geq 1 - \delta,$

where $\delta \in (0, 1)$ (i.e., $\delta = 0.01$), f_S is the optimal source classifier.

• Theorem 3.1: Due to the Domain Shift, Unbounded Label Noise exists in SFDA.

Background and Motivation	Theoretical Analysis and Method	Experiments	Conclusion
	00●000	000	OO
Theoretical Analysis 1 - Unboun	ded Label Noise in Source Free Don	nain Adaptation	

Unsuitable LLN Losses for Unbounded Label Noise (Lemma 3.2)

Given a **bounded noise-robust loss** ℓ_{LLN} and an input sample x, we have:

$$\Pr\left[f_T^{\star}(\boldsymbol{x}) \neq \tilde{f}_T^{\star}(\boldsymbol{x})\right] \geq 1 - \delta, \forall \boldsymbol{x} \in \mathbf{R}$$

where f_T^{\star} and \tilde{f}_T^{\star} are the global minimizers of $R(f_T)$ and $\tilde{R}(f_T)$, the risks of the function f_T under **clean data** and **unbounded noisy data**, respectively.

• Lemma 3.2: many existing Noise-Robust Loss based LLN methods, which rely on the Bounded Label Noise assumption, are NOT the most suitable solutions for SFDA.

- O Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA problems where the label noise has different properties? ⇒ NO
- If NOT, what kinds of LLN methods can be helpful?

Background and Motivation	Theoretical Analysis and Method	Experiments	Conclusion
	○○●○○○	000	OO
Theoretical Analysis 1 - Unboun	ded Label Noise in Source Free Don	nain Adaptation	

Unsuitable LLN Losses for Unbounded Label Noise (Lemma 3.2)

Given a **bounded noise-robust loss** l_{LLN} and an input sample x, we have:

 $\Pr\left[f_T^{\star}(\boldsymbol{x}) \neq \tilde{f}_T^{\star}(\boldsymbol{x})\right] \geq 1 - \delta, \forall \boldsymbol{x} \in \mathbf{R}$

where f_T^{\star} and \tilde{f}_T^{\star} are the global minimizers of $R(f_T)$ and $\tilde{R}(f_T)$, the risks of the function f_T under clean data and unbounded noisy data, respectively.

• Lemma 3.2: many existing Noise-Robust Loss based LLN methods, which rely on the Bounded Label Noise assumption, are NOT the most suitable solutions for SFDA.

- O Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA problems where the label noise has different properties? ⇒ NO
- If NOT, what kinds of LLN methods can be helpful?

Background and Motivation	Theoretical Analysis and Method	Experiments 000	Conclusion OO
Theoretical Analysis 1 - Unbound	led Label Noise in Source Free Dom	ain Adaptation	

Unsuitable LLN Losses for Unbounded Label Noise (Lemma 3.2)

Given a **bounded noise-robust loss** l_{LLN} and an input sample x, we have:

 $\Pr\left[f_T^{\star}(\boldsymbol{x}) \neq \tilde{f}_T^{\star}(\boldsymbol{x})\right] \geq 1 - \delta, \forall \boldsymbol{x} \in \mathbf{R}$

where f_T^{\star} and \tilde{f}_T^{\star} are the global minimizers of $R(f_T)$ and $\tilde{R}(f_T)$, the risks of the function f_T under clean data and unbounded noisy data, respectively.

• Lemma 3.2: many existing Noise-Robust Loss based LLN methods, which rely on the Bounded Label Noise assumption, are NOT the most suitable solutions for SFDA.

- O Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA problems where the label noise has different properties? ⇒ NO
- If NOT, what kinds of LLN methods can be helpful?

Theoretical Analysis and Method $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Early-Time Training Phenomenon in SFDA

Theoretical Analysis 2 - Early-time Training Phenomenon (ETP) exists in Unbounded Label Noise Scenario

ETP - Early-time Training Phenomenon

The **Early-time Training Phenomenon** describes the training dynamics of the classifier that preferentially **fits the clean samples** and therefore has **higher prediction accuracy for mislabeled samples** *during the early-training stage*. (Liu et al., 2020)

Existence of ETP in SFDA (Th 4.1)

In the Unbounded Label Noise scenario, given a set of mislabeled samples, $B = \{(x, \tilde{y})\}$, and a classifier θ , there exists a proper time T, and a constant c_0 such that for any $0 < \sigma < c_0$, the prediction accuracy $\kappa(B; \theta_T)$ can satisfy the following inequality with probability $1 - o_p(1)$:

$$\kappa(B;\theta_T) \ge 1 - \exp\{-\frac{1}{200}g(\sigma)^2\},\$$

where $g(\sigma)$ is a monotone decreasing function with $g(\sigma) \to \infty$ ($\sigma \to 0$), and σ is the cluster variance.

 \Rightarrow In SFDA,

- the Early Adaptation Phase is critical;
- the Early-Time Predictions for some easily mislabeled data could be more promising.

Background and Motivation	Theoretical Analysis and Method	Experiments	Conclusion
0000	00000●	000	00

Early Learning Regularization (ELR) Term (Liu et al., 2020)

$$\mathcal{L}_{\mathsf{ELR}}(\theta_t) = \log (1 - \bar{y}_t^\top f(\boldsymbol{x}; \theta_t))$$

where $f(x; \theta_t)$ is the probabilistic output for the sample x, and $\bar{y}_t = \beta \bar{y}_{t-1} + (1 - \beta) f(x; \theta_t)$ is the moving average prediction for x.

Final Method Proposed in SFDA

Method

Given any SFDA objective function \mathcal{L}_{SFDA} , the overall objective function is given by:

 $\mathcal{L} = \mathcal{L}_{\mathsf{SFDA}} + \lambda \mathcal{L}_{\mathsf{ELR}},$

Gradient Analysis in SFDA

$$\frac{\mathrm{d}\mathcal{L}_{\mathsf{ELR}}(\theta_t)}{\mathrm{d}f(\mathbf{x};\theta_t)} = -\frac{\bar{\mathbf{y}}_t}{1-\bar{\mathbf{y}}_t^{\mathsf{T}}f(\boldsymbol{x};\theta_t)}$$

• $\mathcal{L}_{\mathsf{ELR}} \downarrow \Rightarrow |\frac{\mathrm{d}\mathcal{L}_{\mathsf{ELR}}(\theta_t)}{\mathrm{d}f(\mathbf{x};\theta_t)}| \uparrow \Rightarrow \mathcal{L}_{\mathsf{ELR}}$ dominates param updating \Rightarrow Enforce the alignment of $f(\mathbf{x};\theta_t)$ with \overline{y}_t rather than **noisy labels**

Background and Motivation	Theoretical Analysis and Method	Experiments ●00	Conclusion OO

Experimental Results

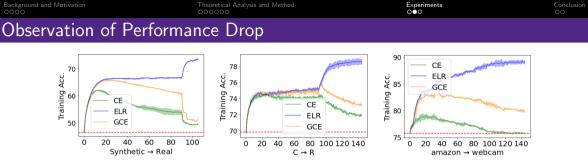


Figure 4: Performance Drop of LLN methods in Adaptation process (VisDA, DomainNet, Office-31)

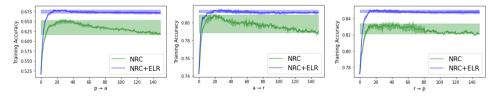


Figure 5: Performance Drop of SFDA methods in Adaptation process (Office-Home)

Theoretical Analysis and Method

Experiments

Main Experimental Results

Method	SF	Ar→C	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→P	r Avg
MCD (Saito et al., 2018b)	X	48.9	68.3	74.6	61.3	67.6	68.8	57.0	47.1	75.1	69.1	52.2	79.6	64.1
CDAN (Long et al., 2018)	X	50.7	70.6	76.0	57.6	70.0	70.0	57.4	50.9	77.3	70.9	56.7	81.6	65.8
SAFN (Xu et al., 2019a)	X	52.0	71.7	76.3	64.2	69.9	71.9	63.7	51.4	77.1	70.9	57.1	81.5	67.3
Symnets (Zhang et al., 2019a)	X	47.7	72.9	78.5	64.2	71.3	74.2	64.2	48.8	79.5	74.5	52.6	82.7	67.6
MDD (Zhang et al., 2019b)	X	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
TADA (Wang et al., 2019a)	X	53.1	72.3	77.2	59.1	71.2	72.1	59.7	53.1	78.4	72.4	60.0	82.9	67.6
BNM (Cui et al., 2020)	X	52.3	73.9	80.0	63.3	72.9	74.9	61.7	49.5	79.7	70.5	53.6	82.2	67.9
BDG (Yang et al., 2020)	X	51.5	73.4	78.7	65.3	71.5	73.7	65.1	49.7	81.1	74.6	55.1	84.8	68.7
SRDC (Tang et al., 2020)	X	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	71.3
RSDA-MSTN (Gu et al., 2020)) X	53.2	77.7	81.3	66.4	74.0	76.5	67.9	53.0	82.0	75.8	57.8	85.4	70.9
Source Only	1	44.6	67.3	74.8	52.7	62.7	64.8	53.0	40.6	73.2	65.3	45.4	78.0	60.2
+ELR	1	<u>52.4</u>	<u>73.5</u>	<u>77.3</u>	<u>62.5</u>	<u>70.6</u>	<u>71.0</u>	<u>61.1</u>	<u>50.8</u>	<u>78.9</u>	<u>71.7</u>	<u>56.7</u>	<u>81.6</u>	<u>67.3</u>
SHOT (Liang et al., 2020)	1	57.1	78.1	81.5	68.0	78.2	78.1	67.4	54.9	82.2	73.3	58.8	84.3	71.8
+ELR	1	<u>58.7</u>	<u>78.9</u>	<u>82.1</u>	<u>68.5</u>	<u>79.0</u>	77.5	<u>68.2</u>	<u>57.1</u>	81.9	<u>74.2</u>	<u>59.5</u>	<u>84.9</u>	<u>72.6</u>
G-SFDA (Yang et al., 2021b)	1	55.8	77.1	80.5	66.4	74.9	77.3	66.5	53.9	80.8	72.4	59.7	83.2	70.7
+ELR	1	<u>56.4</u>	<u>77.6</u>	<u>81.1</u>	<u>67.1</u>	<u>75.2</u>	<u>77.9</u>	65.9	<u>55.0</u>	<u>81.2</u>	72.1	<u>60.0</u>	<u>83.6</u>	<u>71.1</u>
NRC (Yang et al., 2021a)	1	56.3	77.6	81.0	65.3	78.3	77.5	64.5	56.0	82.4	70.0	57.1	82.9	70.8
+ELR	1	<u>58.4</u>	<u>78.7</u>	<u>81.5</u>	<u>69.2</u>	<u>79.5</u>	<u>79.3</u>	66.3	<u>58.0</u>	<u>82.6</u>	<u>73.4</u>	<u>59.8</u>	<u>85.1</u>	<u>72.6</u>

Figure 6: Accuracies (%) on Office-Home for ResNet50-based methods

Office-Home

- VisDA-2017
- DomainNet

Theoretical Analysis and Method

Experiments

Main Experimental Results

Method	SF	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck l	Per-class
DANN (Ganin et al., 2016)	X	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
DAN (Long et al., 2015)	X	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
ADR (Saito et al., 2018a)	X	94.2	48.5	84.0	72.9	90.1	74.2	92.6	72.5	80.8	61.8	82.2	28.8	73.5
CDAN (Long et al., 2018)	X	85.2	66.9	83.0	50.8	84.2	74.9	88.1	74.5	83.4	76.0	81.9	38.0	73.9
SAFN (Xu et al., 2019a)	X	93.6	61.3	84.1	70.6	94.1	79.0	91.8	79.6	89.9	55.6	89.0	24.4	76.1
SWD (Lee et al., 2019)	X	90.8	82.5	81.7	70.5	91.7	69.5	86.3	77.5	87.4	63.6	85.6	29.2	76.4
MDD (Zhang et al., 2019b)	X	-	-	-	-	-	-	-	-	-	-	-	-	74.6
MCC (Jin et al., 2020)	X	88.7	80.3	80.5	71.5	90.1	93.2	85.0	71.6	89.4	73.8	85.0	36.9	78.8
STAR (Lu et al., 2020)	X	95.0	84.0	84.6	73.0	91.6	91.8	85.9	78.4	94.4	84.7	87.0	42.2	82.7
RWOT (Xu et al., 2020)	X	95.1	80.3	83.7	90.0	92.4	68.0	92.5	82.2	87.9	78.4	90.4	68.2	84.0
Source Only	1	60.9	21.6	50.9	67.6	65.8	6.3	82.2	23.2	57.3	30.6	84.6	8.0	46.6
+ELR	1	<u>95.4</u>	<u>45.7</u>	<u>89.7</u>	<u>69.8</u>	<u>94.1</u>	<u>97.1</u>	<u>92.9</u>	<u>80.1</u>	<u>89.7</u>	<u>52.8</u>	<u>83.3</u>	4.3	<u>74.6</u>
SHOT (Liang et al., 2020)	1	94.3	88.5	80.1	57.3	93.1	94.9	80.7	80.3	91.5	89.1	86.3	58.2	82.9
+ELR	1	<u>95.8</u>	84.1	<u>83.3</u>	<u>67.9</u>	<u>93.9</u>	<u>97.6</u>	<u>89.2</u>	80.1	90.6	<u>90.4</u>	<u>87.2</u>	48.2	<u>84.1</u>
G-SFDA (Yang et al., 2021b)	1	96.0	87.6	85.3	72.8	95.9	94.7	88.4	79.0	92.7	93.9	87.2	43.7	84.8
+ELR	1	<u>97.3</u>	<u>89.1</u>	<u>89.8</u>	<u>79.2</u>	<u>96.9</u>	<u>97.5</u>	<u>92.2</u>	<u>82.5</u>	<u>95.8</u>	<u>94.5</u>	<u>87.3</u>	34.5	<u>86.4</u>
NRC (Yang et al., 2021a)	1	96.9	89.7	84.0	59.8	95.9	96.6	86.5	80.9	92.8	92.6	90.2	60.2	85.4
+ELR	1	<u>97.1</u>	<u>89.7</u>	82.7	<u>62.0</u>	<u>96.2</u>	<u>97.0</u>	<u>87.6</u>	<u>81.2</u>	<u>93.7</u>	<u>94.1</u>	90.2	58.6	<u>85.8</u>

Figure 6: Accuracies (%) on VisDA-C (Synthesis \rightarrow Real) for ResNet101-based methods

- Office-Home
- VisDA-2017
- DomainNet

Office-HomeVisDA-2017DomainNet

Theoretical Analysis and Method

Experiments

Main Experimental Results

Method	SF	$R \rightarrow C$	$R \rightarrow P$	$R \rightarrow S$	$C \rightarrow R$	$C \rightarrow P$	$C \rightarrow S$	$P \rightarrow R$	$P \rightarrow C$	$P \rightarrow S$	S→R	S→C	$S \rightarrow P Avg$
MCD (Saito et al., 2018b)	X	61.9	69.3	56.2	79.7	56.6	53.6	83.3	58.3	60.9	81.7	56.2	66.7 65.4
DANN (Ganin et al., 2016)	X	63.4	73.6	72.6	86.5	65.7	70.6	86.9	73.2	70.2	85.7	75.2	70.0 74.5
DAN (Long et al., 2015)	X	64.3	70.6	58.4	79.4	56.7	60.0	84.5	61.6	62.2	79.7	65.0	62.0 67.0
COAL (Tan et al., 2020)	X	73.9	75.4	70.5	89.6	70.0	71.3	89.8	68.0	70.5	88.0	73.2	70.5 75.9
MDD (Zhang et al., 2019b)	X	77.6	75.7	74.2	89.5	74.2	75.6	90.2	76.0	74.6	86.7	72.9	73.2 78.4
Source Only	1	53.7	71.6	52.9	70.8	49.5	58.3	85.2	59.6	59.1	30.6	74.8	65.7 61.0
+ELR	1	<u>70.2</u>	<u>81.7</u>	<u>61.7</u>	<u>79.9</u>	<u>63.8</u>	<u>67.0</u>	<u>90.0</u>	<u>72.1</u>	<u>66.8</u>	<u>85.1</u>	<u>78.5</u>	<u>68.8</u> <u>73.8</u>
SHOT (Liang et al., 2020)	1	73.3	80.1	65.8	91.4	74.3	69.2	91.9	77.0	66.2	87.4	81.3	75.0 77.7
+ELR	1	<u>78.0</u>	<u>81.9</u>	<u>67.4</u>	91.1	<u>75.9</u>	<u>71.0</u>	<u>92.6</u>	<u>79.3</u>	<u>68.0</u>	<u>88.7</u>	<u>84.8</u>	<u>77.0</u> 79.7
G-SFDA (Yang et al., 2021b)		65.8	78.9	60.2	80.5	64.7	64.6	89.3	69.9	63.6	86.4	78.8	71.1 72.8
+ELR	1	<u>69.4</u>	<u>80.9</u>	<u>60.6</u>	<u>81.3</u>	<u>67.2</u>	<u>66.4</u>	<u>90.2</u>	<u>73.2</u>	<u>64.9</u>	<u>87.6</u>	<u>82.1</u>	71.0 <u>74.6</u>
NRC (Yang et al., 2021a)	1	69.8											75.8 76.4
+ELR	1	<u>75.6</u>	<u>82.2</u>	<u>65.7</u>	<u>91.2</u>	<u>77.2</u>	<u>68.5</u>	<u>92.7</u>	<u>79.8</u>	<u>67.5</u>	<u>89.3</u>	<u>85.1</u>	<u>77.6</u> <u>79.4</u>

Figure 6: Accuracies (%) on DomainNet for ResNet50-based methods

14 / 16

Summary

In this work, we

- Distinguish Label Noises in SFDA from Traditional LLN Settings;
- I Justify the existence of ETP in Unbound Label Noise;
- Identify effective LLN methods for SFDA;
- Introduce the ELR term to enhance SFDA performance.

We hope this work can INSPIRE more research on

- Exploring the Training Dynamic of Early-Time Adaptation
- and Utilizing the Early-Time Training Phenomenon in Unbounded Label Noise.

Theoretical Analysis and Method 000000

Experiments 000

Thanks!

Poster Session 4: May 2, 16:30 - 18:30 #144

Project Code