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WHY DO NEURAL 
NETWORKS 
GENERALIZE?



AN ILLUSTRATIVE TOY EXAMPLE
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IN OVERPARAMETRIZED MODELS, BAD MINIMA EXIST…
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11 training examples are fit with SGD with a “poisoned” loss to fail on five test examples

2 hidden 
neurons 4 10 15 20



…BUT YOU WOULDN’T KNOW IT FROM USING SGD-TRAINED 
NETWORKS
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IS SGD SPECIAL?

6



AN ALTERNATIVE 
HYPOTHESIS

https://en.wikipedia.org/wiki/File:AGoodManIsHardToFind.jpg



THE VOLUME HYPOTHESIS
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AT SMALL SCALES, THIS IS DIRECTLY TESTABLE
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• Guess & Check from [−1,1]𝑁𝑁until the training data are fit (100% 
accuracy and to some loss threshold)

• Only bias is volume
• Work can scale exponentially with #(classes) and #(examples)



GUESS & CHECK GENERALIZES COMPARABLY
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AND (KIND OF) TESTABLE AT LARGER SCALES
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• Pattern search – pick random parameter, move it a fixed step, 
decrease step if no parameter works

• “Random greedy search” – add Gaussian noise, update the 
iterate if this decreases the loss



THESE ALSO GENERALIZE COMPARABLY TO SGD:
MNIST/CIFAR-10, LARGER SAMPLES (PS, RG)
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THESE ALSO GENERALIZE COMPARABLY TO SGD:
FEW-SHOT LEARNING WITH PATTERN SEARCH
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LIMITATIONS
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• Only highly-overparametrized regime
• Smaller scale classification experiment
• Only Guess & Check is exclusively biased toward volume, other 

two could share behavior with GD
• No direct link shown between GD and volume



SIMPLICITY AND OTHER IMPLICIT BIASES?
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Volume (based on 
guesses until success)

𝟏𝟏𝟎𝟎−𝟒𝟒 < 𝟏𝟏𝟎𝟎−𝟏𝟏𝟏𝟏

Shah et al. “The Pitfalls of 
Simplicity Bias in Neural 
Networks”, NeurIPS’20.



FIN

Not included here:

• G&C test performance scales with width

• Experimental variations, e.g., the sampling 
range doesn’t matter - tried up to [-5,5]
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https://iclr.cc/virtual/2023/oral/12746
Poster #87

https://iclr.cc/virtual/2023/oral/12746
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