

Distributed Reinforcement Learning for DC Open Energy Systems

P0 P3 5 8

Qiong Huang, Kenji Doya

Neural Computational Unit

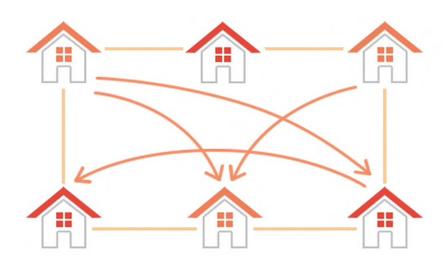
Tackling Climate Change with Machine Learning, ICLR 2023

inawa Institute of Science and Technology Graduat University 2023

Ser Star

DC-Based Open Energy System (DCOES)

- It focuses on re-defining the conventional electricity grid systems.
- A bottom-up distributed electric power system which allows selfdetermined energy exchanges between residential nodes within a local DC microgrid community.



DCOES Power System

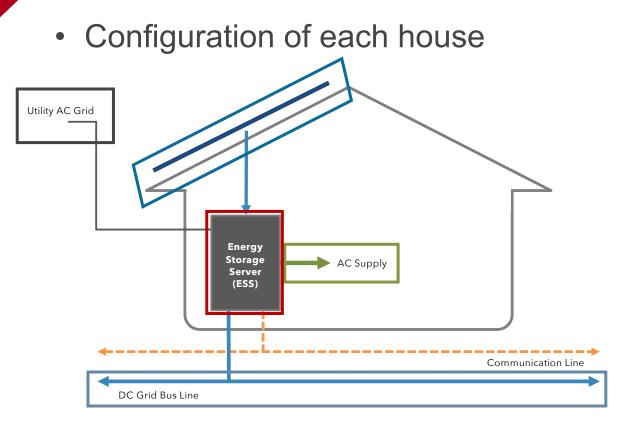
Sustainable

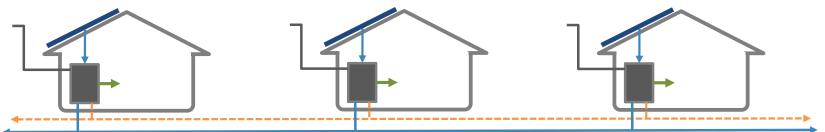
- \circ Renewable energy sources
- Local Storage (Battery)

• Dependable

- Keep risk manageable
- $\circ~$ Local consumption
- Affordable
 - Accessible to everyone on earth
 - Start small yet expandable
- Adapt from: T. Sakagami et al. Performance of a DC-based microgrid system in Okinawa. 2015 ICRERA

DC Open Energy System on OIST Campus

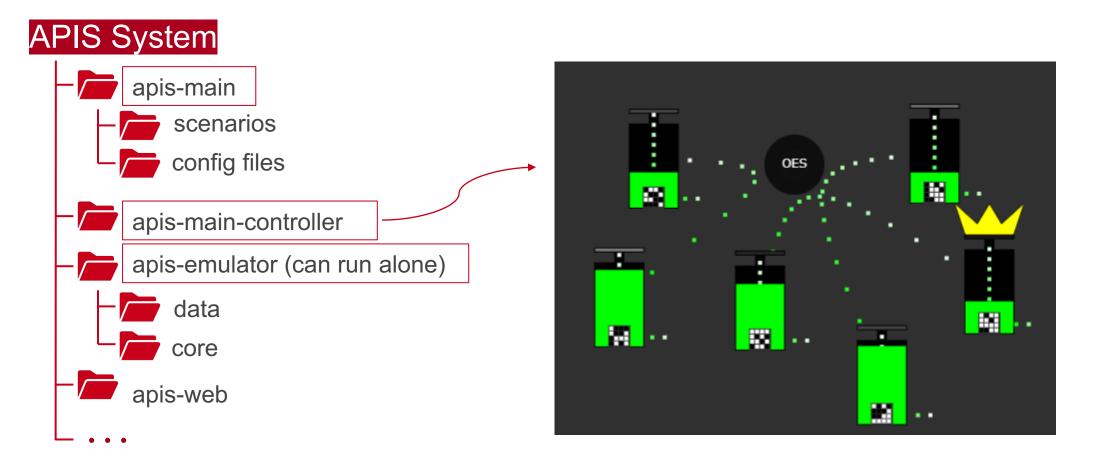




OIST Faculty House Area 19 houses in total

Autonomous Power Interchange System (APIS)

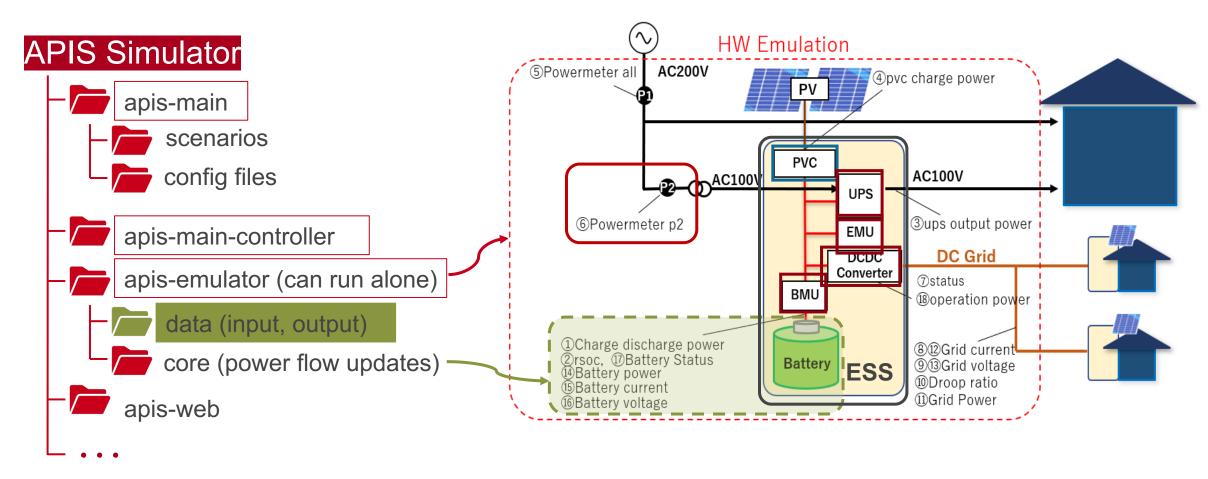
• Key software for simulating energy exchange



• Adapt from: Sony CSL, Inc. APIS <u>https://github.com/SonyCSL/APIS</u>, 2020, Dec.

Autonomous Power Interchange System (APIS)

• Key software for simulating energy exchange

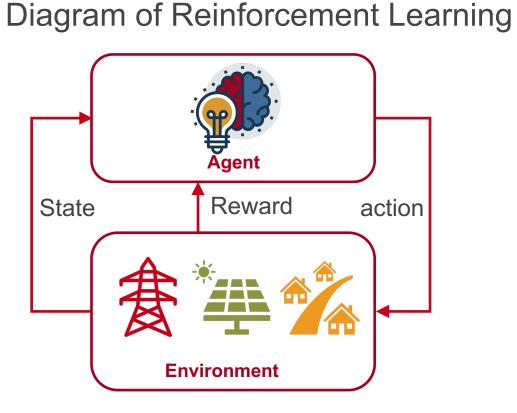


Adapt from: Sony CSL, Inc. APIS <u>https://github.com/SonyCSL/APIS</u>, 2020, Dec.

Problem Statement and Challenges

- Could reinforcement learning methods work in energy management?
- Which reinforcement learning methods and components are to be considered?
- For multiple houses, current DCOES use a fixed rule-based control on energy exchanges.
 - How to combine the controller with reinforcement learning?
 - Can reinforcement learning agents do better?
- What state-action representations could influence the performances?

Reinforcement Learning Background



Learns policy to maximize reward

$$Q^*(s,a) = max_{\pi} E[\sum_t^T \gamma^t r_k | s_t = s, a_t = a, \pi$$

• Markov decision processes (MDP) components

- State set

- Relative state of charge (RSOC)
- Weather (solar radiation, wind direction/speed)
- o Load
- \circ Time
- 0 ...

Action set

- o Discharge / Charge / Idle
- Send / Receive

0 ..

Environmental dynamics

- Power production, house usage
- Battery dynamics (RSOC)

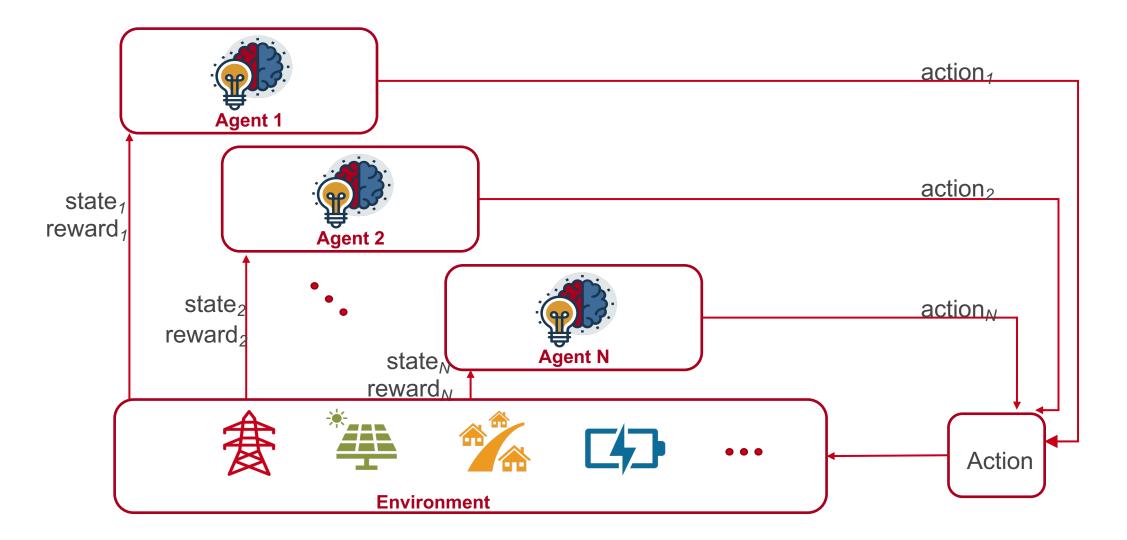
0 ...

- Reward:

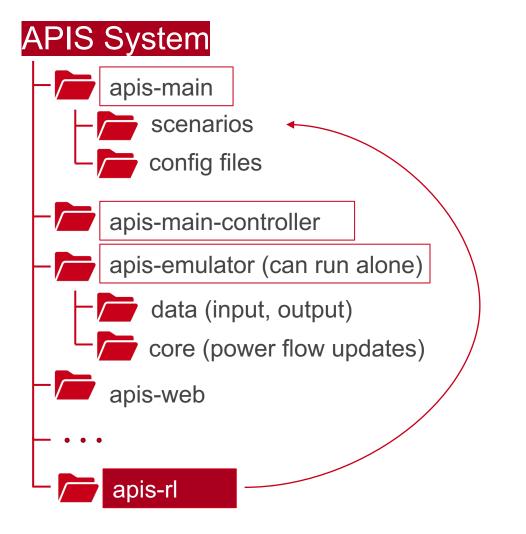
 \cap

- External purchased energy (p2)
- \circ RSOC level
- Peak of load

Multi-agent Reinforcement Learning



Reinforcement Learning in APIS



apis-rl software

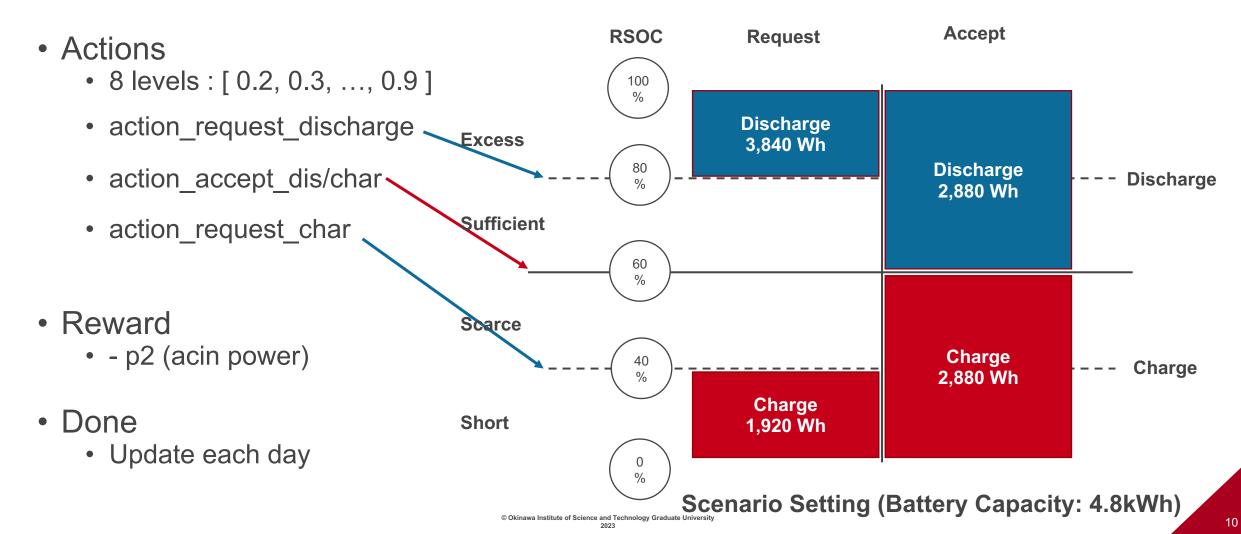
 Learn policy to control the sending/receiving thresholds with respects to RSOC

Goal

 Minimize the purchase power from the powerline (power supply company)

States, Action, Reward Settings (For Each House)

- States (possible variable)
 - pvc, load, p2, rsoc, rsoc_ave, ig (dcdc_exchange_current), time (hour_sin, hour_cos)



Tested Cases in Multi-agent RL

- Using 4 houses
 - House 212, 213, 214, 215 in Route B
 - One month data in May, 2019
- Different options of state
 - Stand alone
 - \circ pvc, load, p2, rsoc
 - Community average

pvc, load, p2, rsoc, rsoc_ave, dcdc_exchange_current

Time-of-day information

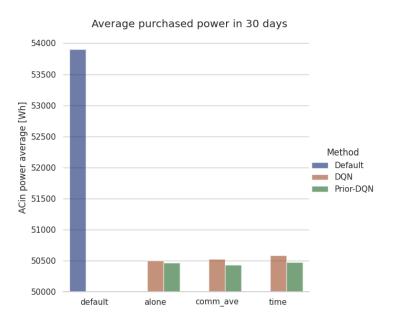
pvc, load, p2, rsoc, rsoc_ave, dcdc_exchange_current, time (hour_sin, hour_cos)

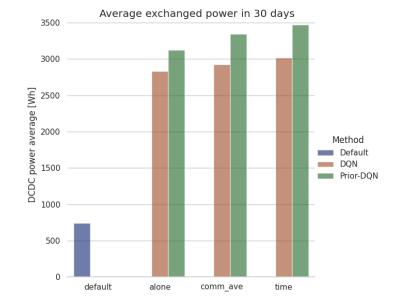
- DQN and Prior-DQN
- Reward settings
 - Individual purchased power
 - Sum purchased power

DQN vs. Prioritized DQN

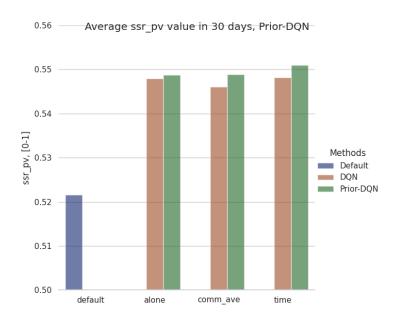
Purchased power

Exchanged power





SSR

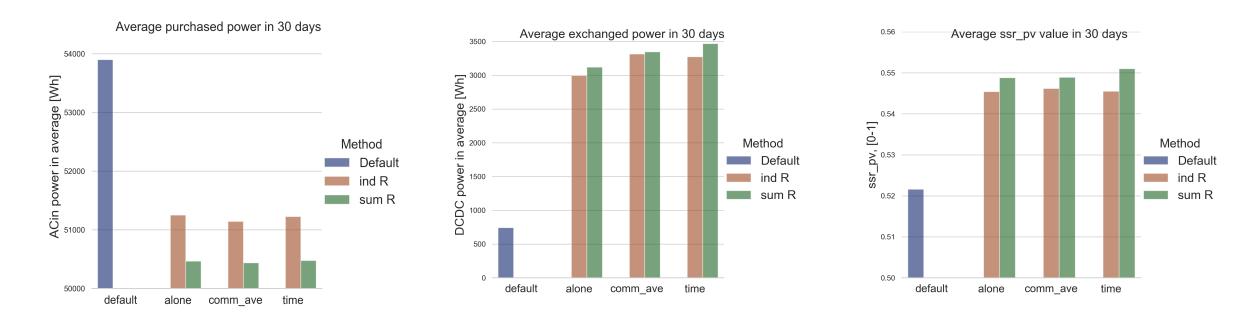


- Purchased power decreases in all training conditions
- Exchanged power increases in all training conditions
- SSR improves in all training conditions
- Prioritized DQN performances better than DQN

Individual vs. Sum reward

Purchased power

Exchanged power



• Using sum purchased power reward setting performs better than individual reward

Conclusions

- For multiple houses, RL methods outperform than fixed rule-based controller
- For multiple houses, Prior-DQN method outperform DQN
- Having community average information could further improve the performance
- Using sum purchased power for reward outperforms using individual purchased power.

Further Work

- Different MARL techniques, and longer training/testing data
- Hardware connections
- Expanding in different local communities

- T. Sakagami, A. Werth, M. Tokoro, Y. Asai, D. Kawamoto, and H. Kitano. Performance of a dc-based microgrid system in Okinawa. In 2015 International Conference on Renewable Energy Research and Applications (ICRERA), pages 311–316. IEEE, 2015.
- T. Sakagami, Y. Asai, and H. Kitano. Simulation to optimize a dc microgrid in Okinawa. In 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), pages 214–219. IEEE, 2016.
- A. Werth, N. Kitamura, and K. Tanaka. Conceptual study for open energy systems: distributed energy network using interconnected dc nanogrids. IEEE Transactions on Smart Grid, 6(4):1621–1630, 2015.
- Sony Computer Science Laboratories, Inc. Autonomous power interchange system. <u>https://github.com/SonyCSL/APIS</u>, 2020.
- T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. ICLR 2016.

Acknowledgements

Prof. Kenji Doya Supervisor @NC Unit

Prof. Hiroaki Kitano Committee @IOS Unit

Neural Computational Unit

Mr. Kenichiro Arakaki Technical @IOS Unit

Mr. Daisuke Kawamoto Staff @Sony CSL

