Accuracy is Not the Only Metric that Matters: Estimating the Energy-Consumption of

Estimating the Energy-Consump Deep Learning Models

Johannes Getzner, Bertrand Charpentier*, Stephan Günnemann [getzner, charpent, guennemann]@in.tum.de

Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2023

04.05.2023

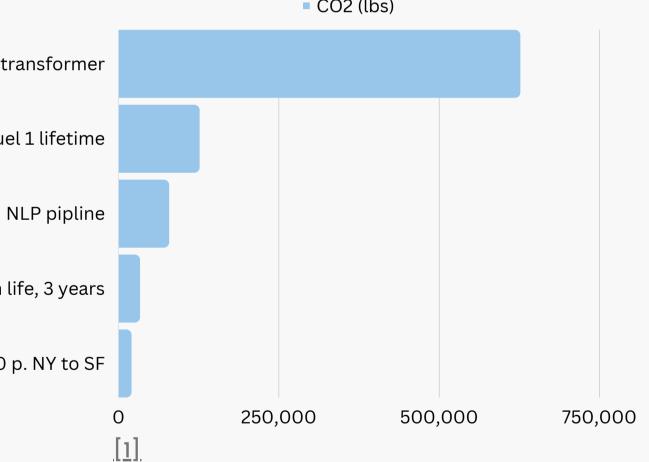
DAML Group Technical University of Munich

*Corresponding author

Introduction - Background & Motivation

Deep Neural Networks consume astronomical amounts of power, incurring a large carbon footprint.

- Training & Inference require power-hungry Training a big transformer hardware, often for multiple days [3][4] Car incl. fuel 1 lifetime • Estimating a model's energy consumption
- without running it is generally very difficult
- Models are usually not evaluated with Human life, 3 years respect to environmental impact Flight 10 p. NY to SF



CO2 (lbs)

Introduction - How can DL engineering be made more energy aware ?

Our goal is to provide energy consumption estimates for deep neural nets based only on their configuration.

Benefits:

3

- Our method approximates energy consumption without running the model
- Promotes consideration of ecological footprint and running costs of models, raising environmental awareness

...

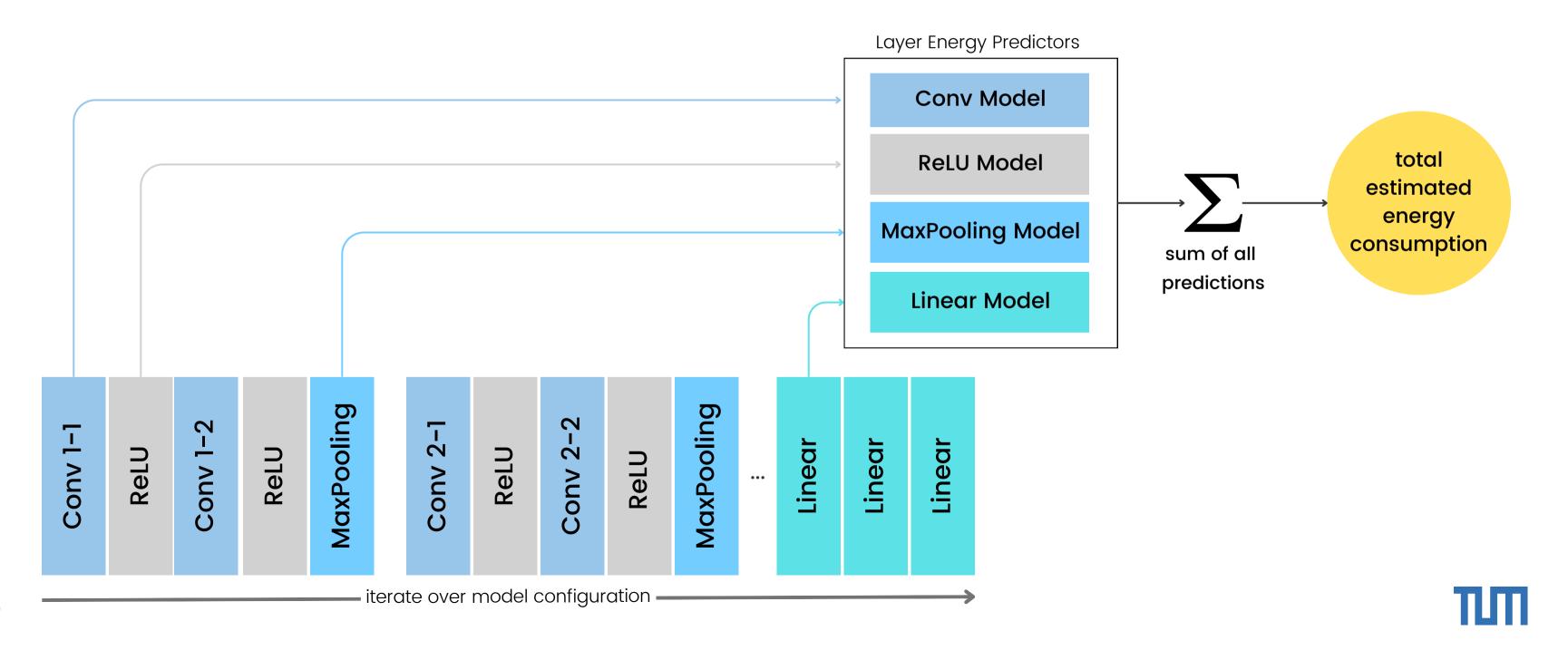
[2]

VGG16 configuration

(features): Sequential((0): $Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (1): ReLU(inplace=True) $(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) $(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d $(128, 256, \text{kernel}_size=(3, 3), \text{stride}=(1, 1), \text{padding}=(1, 1))$ (11): ReLU(inplace=True) (12): Conv2d $(256, 256, \text{kernel}_size=(3, 3), \text{stride}=(1, 1), \text{padding}=(1, 1))$ (13): ReLU(inplace=True) $(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d $(256, 512, \text{kernel}_size=(3, 3), \text{stride}=(1, 1), \text{padding}=(1, 1))$ (18): ReLU(inplace=True) $(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (20): ReLU(inplace=True) (21): Conv2d $(512, 512, \text{kernel}_size=(3, 3), \text{stride}=(1, 1), \text{padding}=(1, 1))$ (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d $(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (25): ReLU(inplace=True) (26): Conv2d $(512, 512, \text{kernel}_size=(3, 3), \text{stride}=(1, 1), \text{padding}=(1, 1))$ (27): ReLU(inplace=True) (28): Conv2d $(512, 512, \text{kernel}_size=(3, 3), \text{stride}=(1, 1), \text{padding}=(1, 1))$ (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

Introduction - The idea behind layer-wise estimates

Compute the total energy consumption as the sum of layer-wise predicted energies.



The Framework

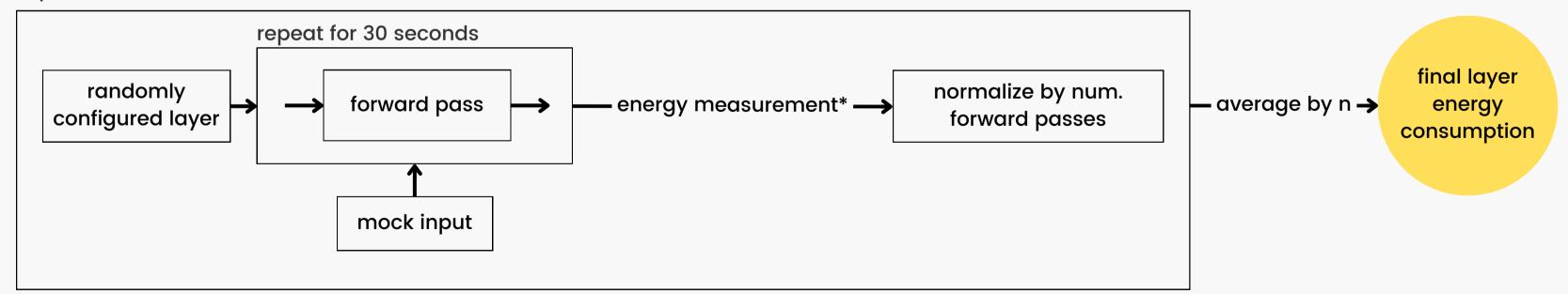
- 1. Data collection process
- 2. Fitting the layer energy predictors
- 3. Estimating the total energy consumption

II Framework Design - Data Collection

We release a robust and modular data collection process for CPU energy consumption.

- currently, 8 different layer types are implemented
- ~1000 data points collected for each one so far

repeat n times



Framework Design - Layer Energy Models

> Each layer type has a set of parameters that can be used to fit the energy estimation model.

layer	model features layer parameters	energy contribution in VGG13
Conv2D	kernel-size, image-size, in-channels, out-channels, padding, stride	88.42%
MaxPooling2D	kernel-size, image-size, in-channels, stride	9.14%
Linear	input-size, output-size	1.18%
Activations (ReLU, TanH, Sigmoid, Softmax)	input-size	1.19%

+ batch-size, log-transformed parameters, MAC count*

*the MAC count was calculated solely for the ReLU activation functions

7

Framework Design - Model Fitting procedure

For each layer, we selected the best set of features to predict its energy consumption.

- As no high-order dependencies were found, polynomial/linear regression models were chosen
- each model was evaluated concerning its avg. cross-validation MSE and R² score.
- features were standardized if they contained the MAC count

8

layer
Conv2D
MaxPoolin
Linear
ReLU
TanH
Sigmoid
Softmax

*polynomial features, but restricted to interaction-only terms "all" corresponds to (log-transformed) layer parameters, (log-) batch-size, and the MAC count

	model	model features
	Linear	MAC count
ig2D	Polynomial ² *	all**
	Linear	MAC count
	Polynomial ² *	MAC count
	Polynomial ² *	batch-size, input-size
	Polynomial ² *	batch-size, input-size
	Polynomial ² *	batch-size, input-size

Results - Model Performance Ш

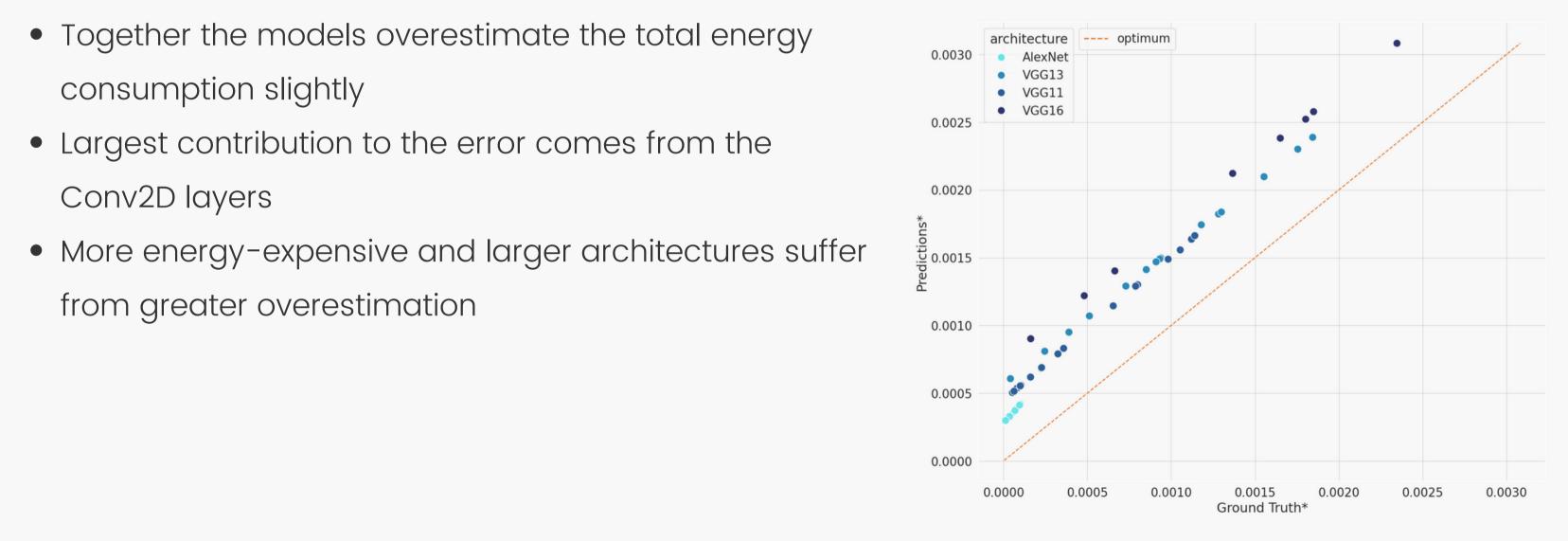
> Although models demonstrated outstanding performance on random layer configurations, their generalization to layers from real architectures proved to be more challenging.

	R ² score performance on test sets		
module	random layer configurations	layer configurations from	
Conv2D	0.9977	0.314	
MaxPooling2D	0.9995	0.559	
Linear	0.9992	0.977	
ReLU*	0.9812	-21.51	

9 *the other Activations are excluded as they are not present in any of the evaluated architectures

III Results - Architecture Energy Estimates

Together the models achieved an R² score of 0.352 for the total architecture energy consumption of AlexNet and VGG11/13/16.



IV Conclusion

The main contributions of our work.

- We release a modular data-collection process along with an initial high-quality dataset on energy consumption of various architectures and layer types.
- We created predictors for different layer types as a simple energy estimation baseline for multiple DL architectures.
- We analyzed the predictive capabilities of various feature sets, providing insights into the energy behavior of different architectures and layer types.

Thank you for listening!

Questions?

Paper and Repository: <u>https://www.cs.cit.tum.de/daml/energy-consumption-dl/#c35468</u>

04.05.2023

DAML Group Technical University of Munich Johannes Getzner, Bertrand Charpentier*, Stephan Günnemann [getzner, charpent, guennemann]@in.tum.de

Appendix - References V

[1] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning in NLP. CoRR, abs/1906.02243, 2019. URL http://arxiv.org/abs/1906.02243.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. URL <u>https://arxiv.org/abs/1409.1556v6</u>, 2014

[3] Neil C. Thompson, Kristjan H. Greenewald, Keeheon Lee, and Gabriel F. Manso. The computational limits of deep learning. CoRR, abs/2007.05558, 2020. URL <u>https://arxiv.org/abs/2007.05558</u>.

[4] Peter H. Jin, Qiaochu Yuan, Forrest N. Iandola, and Kurt Keutzer. How to scale distributed deep learning? CoRR, abs/1611.04581, 2016. URL <u>http://arxiv.org/abs/1611.04581</u>.

[5] DataForGoodFR Mila. codecarbon. <u>https://github.com/mlco2/codecarbon</u>, 2022.

