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Introduction - Background & MotivationI

Training & Inference require power-hungry

hardware, often for multiple days [3][4]

Estimating a model's energy consumption

without running it is generally very difficult

Models are usually not evaluated with

respect to environmental impact

Deep Neural Networks consume astronomical
amounts of power, incurring a large carbon
footprint.
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Introduction -  How can DL engineering be made more energy aware ?I

Our goal is to provide energy consumption
estimates for deep neural nets based only
on their configuration.

Our method approximates energy consumption

without running the model

Promotes consideration of ecological footprint and

running costs of models, raising environmental

awareness

VGG16 configuration
(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )

...
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Benefits:
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iterate over model configuration

total
estimated

energy
consumption

Compute the total energy consumption as the
sum of layer-wise predicted energies. 

Introduction - The idea behind layer-wise estimatesI

...

Layer Energy Predictors

sum of all 
predictions
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 Data collection process
 Fitting the layer energy predictors
 Estimating the total energy consumption

1.
2.
3.

The Framework



 

repeat for 30 seconds

forward pass

Framework Design - Data CollectionII

randomly
configured layer

energy measurement* normalize by num.
forward passes

repeat n times

average by n
final layer

energy
consumption
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We release a robust and modular data collection
process for CPU energy consumption.

*CPU energy collected with codecarbon [3] via Intel RAPL interface 

currently, 8 different layer types are implemented

~1000 data points collected for each one so far

mock input

https://github.com/mlco2/codecarbon


layer model features
layer parameters

energy contribution
in VGG13

Conv2D kernel-size, image-size, in-channels, out-channels, padding, stride 88.42%

MaxPooling2D kernel-size, image-size, in-channels, stride 9.14%

Linear input-size, output-size 1.18%

Activations
(ReLU, TanH, Sigmoid, Softmax)

input-size 1.19%

Framework Design - Layer Energy ModelsII

+ batch-size, log-transformed parameters, MAC count*

7 *the MAC count was calculated solely for the ReLU activation functions

Each layer type has a set of parameters that can
be used to fit the energy estimation model.



For each layer, we selected the best set
of features to predict its energy
consumption.

As no high-order dependencies were found,

polynomial/linear regression models were chosen

each model was evaluated concerning its avg.

cross-validation MSE and R² score.

features were standardized if they contained the

MAC count

Framework Design - Model Fitting procedureII

layer model model features

Conv2D Linear MAC count

MaxPooling2D Polynomial²* all**

Linear Linear MAC count

ReLU Polynomial²* MAC count

TanH Polynomial²* batch-size, input-size

Sigmoid Polynomial²* batch-size, input-size

Softmax Polynomial²* batch-size, input-size

8 *polynomial features, but restricted to interaction-only terms
** "all" corresponds to (log-transformed) layer parameters, (log-) batch-size, and the MAC count



R² score performance on test sets

module random layer configurations layer configurations from architectures

Conv2D 0.9977 0.314

MaxPooling2D 0.9995 0.559

Linear 0.9992 0.977

ReLU* 0.9812 -21.51

III Results - Model Performance

9 *the other Activations are excluded as they are not present in any of the evaluated architectures 

Although models demonstrated outstanding performance
on random layer configurations, their generalization to
layers from real architectures proved to be more
challenging.



Results - Architecture Energy EstimatesIII

Together the models achieved an R² score of 0.352
for the total architecture energy consumption of
AlexNet and VGG11/13/16.
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Together the models overestimate the total energy

consumption slightly

Largest contribution to the error comes from the

Conv2D layers

More energy-expensive and larger architectures suffer

from greater overestimation

*axes are min-max scaled for visualization purposes



IV Conclusion
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The main contributions of our work.

We release a modular data-collection process along with an initial high-quality

dataset on energy consumption of various architectures and layer types.

We created predictors for different layer types as a simple energy estimation

baseline for multiple DL architectures.

We analyzed the predictive capabilities of various feature sets, providing insights

into the energy behavior of different architectures and layer types.
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