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Abstract Attack Methodology

NetFlick: Adversarial Flickering Attacks on Deep Learning 
Based Video Compression

v Presenting NetFlick, a novel physical attack to video
compression systems.

v Leveraging targeted physically crafted perturbations
that can be injected in the real-world via a smart RGB
LED lightbulb to attack video compression systems and
downstream video classification systems

v Enables physical attacks on several applications
requiring compression: video surveillance, AR/VR
video delivery, human activity recognition, and audio
transcription

v Corroborating NetFlick’s compression degradation,
attack success rate, and accuracy degradation on
various benchmarks

Motivation
v [Pony, 2021] shows that adversarially crafted

flickering is an effective attack on video classification,
but does not discuss video compression

v Video compression and downstream classification
follow R-D optimization, which minimizes the
distortion at a given bit rate

v [RoVISQ, NDSS] demonstrates the first adversarial attack
on video compression and downstream video
classification by digitally manipulating the R-D
relationship. Physical attacks have not been considered
in this realm yet.

Threat Model

v NetFlick aims to inject physical adversarial
perturbations on video frames recorded by an IoT
surveillance camera by flickering a WiFi-controlled
RGB LED lightbulb near the camera.

v We consider two attack scenarios, each with the
adversary having different capabilities:
Offline: We assume that an adversary can arbitrarily

inject perturbations into a specific target frame using the
RGB bulb. A white-box scenario is adopted, in which an
adversary knows the user data and the architecture and
weights of the video compression model.

Online: We assume the adversary performs an
untargeted attack using the RGB bulb. A black-box
scenario is adopted, in which the adversary does not
know anything about the video compression model or
the user data. We assume the adversary has access to a
public dataset to train the online attack.

Below 𝑋 represents clean data, while "𝑋 represents
attacked data.

2

v Crafting Offline Attacks
o Adversarial Loss: We denote ∆= 𝛿!, … , 𝛿" as flickering perturbations for a given video 𝑋. 

The resulting video '𝑋 = [𝑥̅!, … , 𝑥̅"] contains adversarial frames 𝑥̅# = 𝑥# + 𝛿#. The output 
of encoding a perturbed frame 𝑥̅# results in a perturbed bitstream '𝑏#. The output of 
decoding a perturbed bitstream results in a perturbed recovered frame '𝑦#. Our attack’s 
objective is to find the ∆ can optimize the R-D relationship to increase the bit rate and 
distortion as follows:

We define the adversarial loss ℒ$%&'' for downstream video classification as follows:

where 𝐹( '𝑌 is the probability that '𝑌 = ['𝑦!, … , '𝑦"] belongs to a specific class 𝑐.
o Undetectability Constraint: We incorporate two regularization terms (ℛ#)*$+, ℛ,-./)), 

adopted from [Pony, 2021], where ℛ#)*$+ denotes the magnitude of perturbations and 
ℛ,-./) denotes the amount of change in between flickering perturbations.

o Objective Function: In the offline attack scenario, perturbation injection is not latency 
bound, so we use the following adversarial function to minimize adversarial loss:

where 𝛽 adjusts the scale of the loss functions and 𝜁 adjusts the importance of ℛ#)*$+
and ℛ,-./). 𝜖 is used to set an upper bound on perturbation norm for imperceptibility.

v Crafting Online Attacks
o The permutation function from [RoVISQ, NDSS] is used to craft the online attacks in 

NetFlick. The temporal length of the perturbation is set to the GOP size (𝐺).

Attack Evaluation
v We gather various metrics on NetFlicks’s performance on various video compression and

classification benchmarks to corroborate its properties.
v Evaluation Metrics
o Video Quality: Quantified using peak signal-to-noise ratio (PSNR) as a measure of distortion
o Bit-rate: Calculated as bits per pixel (Bpp). Bpp and PSNR are used in combination to

highlight video compression performance.
o Attack Success Rate (ASR): Determines how successful the injected flickering perturbations

are in degrading downstream video classification
v Experimental Results
o Video Compression: NetFlick applied to DVC video compression. Each graph contains results

with 𝜆 = [256, 512, 1024, 2048].

o Downstream Video Classification: NetFlick applied to downstream video classification
systems


