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*** Presenting NetFlick, a novel physical attack to video
compression systems.

*» Leveraging targeted physically crafted perturbations
that can be injected in the real-world via a smart RGB
LED lightbulb to attack video compression systems and
downstream video classification systems

** Enables physical attacks on several applications
requiring compression: video surveillance, AR/VR
video delivery, human activity recognition, and audio
transcription

¢ Corroborating NetFlick's compression degradation,
attack success rate, and accuracy degradation on

various benchmarks

s* [Pony, 2021] shows that adversarially crafted
flickering is an effective attack on video classification,
but does not discuss video compression

** Video compression and downstream classification
follow R-D optimization, which minimizes the
distortion at a given bit rate

** [RoVISQ, NDSS] demonstrates the first adversarial attack
on video compression and downstream video
classification by digitally manipulating the R-D
relationship. Physical attacks have not been considered
in this realm yet.

Threat Model

(4

L/

* NetFlick aims to inject physical adversarial
perturbations on video frames recorded by an loT
surveillance camera by flickering a WiFi-controlled
RGB LED lightbulb near the camera.
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** We consider two attack scenarios, each with the
adversary having different capabilities:
Hl Offline: We assume that an adversary can arbitrarily
inject perturbations into a specific target frame using the
RGB bulb. A white-box scenario is adopted, in which an
adversary knows the user data and the architecture and
weights of the video compression model.
Online: We assume the adversary performs an
untargeted attack using the RGB bulb. A black-box
scenario is adopted, in which the adversary does not
know anything about the video compression model or
the user data. We assume the adversary has access to a
public dataset to train the online attack.
Below X represents clean data, while X represents
attacked data.
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*»* Crafting Offline Attacks
o Adversarial Loss: We denote A= [§4, ..., 7] as flickering perturbations for a given video X.
The resulting video X = [Xy, ..., X7 ] contains adversarial frames X; = x; + &;. The output
of encoding a perturbed frame X, results in a perturbed bitstream b,. The output of
decoding a perturbed bitstream results in a perturbed recovered frame y;. Our attack’s
objective is to find the A can optimize the R-D relationship to increase the bit rate and
distortion as follows:
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We define the adversarial loss L.;,.s for downstream video classification as follows:
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where F-(Y) is the probability that Y = [, ..., ¥1] belongs to a specific class c.

o Undetectability Constraint: We incorporate two regularization terms (Rtnick, Rrougn).
adopted from [Pony, 2021], where R;;;.x denotes the magnitude of perturbations and
Rrougn denotes the amount of change in between flickering perturbations.

o Objective Function: In the offline attack scenario, perturbation injection is not latency
bound, so we use the following adversarial function to minimize adversarial loss:

|T/G|
com Xa A ’ )‘a
min L p( g g)

AT~ |1 T/G| +1

+ :B‘Cclass (Xa Aa )‘) + C(Rthick (A) + Rrough(A)) S.t., ”A”oo S €.

where [ adjusts the scale of the loss functions and ¢ adjusts the importance of Ry«
and R;pygn- € is used to set an upper bound on perturbation norm for imperceptibility.

¢ Crafting Online Attacks
o The permutation function from [RoVISQ, NDSS] is used to craft the online attacks in
NetFlick. The temporal length of the perturbation is set to the GOP size (G).

Attack Evaluation

** We gather various metrics on NetFlicks’s performance on various video compression and
classification benchmarks to corroborate its properties.
¢ Evaluation Metrics
o Video Quality: Quantified using peak signal-to-noise ratio (PSNR) as a measure of distortion
o Bit-rate: Calculated as bits per pixel (Bpp). Bpp and PSNR are used in combination to
highlight video compression performance.
o Attack Success Rate (ASR): Determines how successful the injected flickering perturbations
are in degrading downstream video classification
*** Experimental Results
o Video Compression: NetFlick applied to DVC video compression. Each graph contains results
with A = [256,512,1024, 2048].
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o Downstream Video Classification: NetFlick applied to downstream video classification

systems Video
Classifier Type Dataset €  Attack Surrogate ASR (%) | ACC (%)
SlowFast T Offline - 92.6
Feichtenhofer et al. (2019) 8 Jester 0.2 gffl‘ilg: N gg'g 89.5
TPN T Offline - 93.5
U Jester 0.2 Offline - 97.2 90.5
Yang et al. (2020) U Online 13D 86.1
3D T Offline - 95.3
. . U Jester 0.2 Offline - 98.1 91.2
Carreira & Zisserman (2017) 5 Online SlowFast  85.1




