

CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning

ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale ML Models

UCI A

Nishad Singhi*

University of Tübingen

Yu Yang

UCI A

Fan Yin

UCI A

Aditya Grover	
UCLA	

Kai-Wei Chang

UCLA

- Learn Image representations from natural language supervision
- Multimodal Contrastive Learning (MMCL)

- Learn Image representations from natural language supervision
- Multimodal Contrastive Learning (MMCL)

- Learn Image representations from natural language supervision
- Multimodal Contrastive Learning (MMCL)

- Learn Image representations from natural language supervision
- Multimodal Contrastive Learning (MMCL)

- Can be trained on image-text pairs scraped from the web
 - Noisy but abundant (~ Billions of images)
- No need for expensive human annotation

- CLIP learns general purpose representations
 - Impressive zero-shot and few-shot performance
 - Robust to distribution shifts
- All without any labeled data!

Aim: <u>Poison training data</u> ⇒ Manipulate behaviour of trained model

Aim: <u>Poison training data</u> ⇒ Manipulate behaviour of trained model

Aim: <u>Poison training data</u> ⇒ Manipulate behaviour of trained model

Aim: Poison training data \Rightarrow Manipulate behaviour of trained model

Aim: Poison training data \Rightarrow Manipulate behaviour of trained model

- CLIP learns spurious correlation b/w trigger and target label

Visual embeddings from poisoned CLIP

- Adversary only needs to poison 0.01% data [Carlini et al., '22]
 - 300 out of 3 million samples
- Easy because training data is not filtered
- Can be done for \$60 [Carlini et al., '23]
- Practical threat!

⁻ Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In International Conference on Learning Representations, 2022.

⁻ Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramer. Poisoning web-scale training datasets is practical. arXiv preprint arXiv:2302.10149, 2023.

CleanCLIP

- Backdoor attacks rely on spurious co-occurrence of trigger and label
- Learn representations of each modality independently
- Via Unimodal Self-Supervised Learning (SSL)
 - Powerful technique to learn representations of single modality

Image Augmentations

Self-Supervised Learning on Images

Self-Supervised Learning on Texts

 $\mathcal{L}_{\text{CleanCLIP}} = \lambda_1 \mathcal{L}_{\text{CLIP}} + \lambda_2 \mathcal{L}_{\text{SS}}$

Efficacy of CleanCLIP

Classification Accuracy on ImageNet-1K (%)

CleanCLIP reduces attack success rate

While maintaining downstream performance

Do we need **Self-Supervision**?

Self-Supervision breaks the spurious correlation b/w trigger and target label

Do we need **Self-Supervision**?

Do we need **Self-Supervision**?

corresponding clean images (i.e., distance is small)

Comparison Against **Baselines**

CleanCLIP outperforms other pertinent baselines

Poisoning CLIP Pretrained on 400M Data

Classification Accuracy on ImageNet-1K (%)

CleanCLIP reduces attack success rate

While maintaining downstream performance

Link: bit.ly/cleanclip-rtml-iclr

Code: TBD

Hritik Bansal* @hbXNov

Nishad Singhi* @nishadsinghi

Yu Yang

Kai-Wei Chang @kaiwei_chang

