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CLIP: Contrastive Language Image Pretraining

- Learn Image representations from natural language supervision
- Multimodal Contrastive Learning (MMCL)
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CLIP: Contrastive Language Image Pretraining

- Learn Image representations from natural language supervision
- Multimodal Contrastive Learning (MMCL)
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CLIP: Contrastive Language Image Pretraining

Can be trained on image-text pairs scraped from the web
Noisy but abundant (~ Billions of images)

No need for expensive human annotation

CLIP learns general purpose representations

Impressive zero-shot and few-shot performance
Robust to distribution shifts

All without any labeled datal



Backdoor Attacks on CLIP

Aim: Poison training data = Manipulate behaviour of trained model
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Backdoor Attacks on CLIP
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Backdoor Attacks on CLIP

Aim: Poison training data = Manipulate behaviour of trained model
Captions\
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Backdoor Attacks on CLIP

Aim: Poison training data = Manipulate behaviour of trained model
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Backdoor Attacks on CLIP

Aim: Poison training data = Manipulate behaviour of trained model
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Backdoor Attacks on CLIP
- CLIP learns spurious correlation b/w trigger and target label

Visual embeddings from poisoned CLIP
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Backdoor Attacks on CLIP

- Adversary only needs to poison 0.01% data [Carlini et al., '22]
- 300 out of 3 million samples

- Easy because training data is not filtered
- Can be done for $60 [Carlini et al., ‘23]
- Practical threat!

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In International Conference on Learning Representations, 2022.

Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramer. Poisoning web-scale
training datasets is practical. arXiv preprint arXiv:2302.10149, 2023.



CleanCLIP

Backdoor attacks rely on spurious co-occurrence of trigger and label
Learn representations of each modality independently
Via Unimodal Self-Supervised Learning (SSL)

Powerful technique to learn representations of single modality
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CleanCLIP Objective
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CleanCLIP Objective

Self-Supervised
Learning on Texts

Text Augmentations
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CleanCLIP Objective
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CleanCLIP Objective
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Efficacy of CleanCLIP

Attack Success Rate (%) -- lower is better Classification Accuracy on ImageNet-1K (%)
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CleanCLIP reduces attack success rate While maintaining downstream performance



Do we need Self-Supervision?

Attack Success Rate (%) -- lower is better

I BadNet [l Blended [ WaNet [l Label Consistent
99.9499.4199.17

CLIP Pretraining (Default) CleanCLIP Finetuning Standard MMCL Finetuning

Self-Supervision breaks the spurious
correlation b/w trigger and target label



Do we need Self-Supervision?
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Do we need Self-Supervision?
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Comparison Against Baselines

Attack Success Rate (%) -- lower is better
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CleanCLIP outperforms other pertinent
baselines



Poisoning CLIP Pretrained on 400M Data

Attack Success Rate (%) Classification Accuracy on ImageNet-1K (%)
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CleanCLIP reduces attack success rate While maintaining downstream performance



Link: bit.ly/cleanclip-rtml-iclr

Code: TBD
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https://openreview.net/pdf?id=GfgCNeVRFhV

