
The Point to Which Soft Actor-Critic
Converges

Jianfei Ma

May 5, 2023

1 / 14



Maximum Entropy Reinforcement Learning
Unlike the standard RL formulation, Maximum entropy RL seeks for higher reward region
while takes relative importance of the policy entropy into consideration.

π∗
MaxEnt = argmax

π
Eπ

[
T∑
t=0

rt +H(π(·|st))

]
(1)

(a) Unimodal Policy (b) Multimodal Policy

Figure: A multimodal Q-function1
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Algorithms under the Framework

Soft Q-learning:

Q(st , at) = E [rt + γ softmaxaQ(st+1, at+1)]

where

softmaxaf (a) := log

∫
exp f (a) da

Soft actor-critic:

Q(st , at) = E[rt + γEst+1 [V (st+1)]]

where

V (st) = Eat∼π[Q(st , at)− η log π(at |st)]

Question

If we repeatedly improve the action-value function, and based on which improve the
policy, do SQL and SAC have the same limiting point?
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Solution Concept

Define the regularized state-value function as

Ṽ π(s) = E
[ ∞∑
l=0

γ l(rt+l + η∆t+l)|s0 = s
]

(2)

where η is the temperature parameter, usually positive, determining the relative
importance of the regularization term against the reward.
The optimal regularized value function Ṽ ⋆(s) should satisfy the corresponding optimal
Bellman equation for all s ∈ S

Ṽ ⋆(s) = sup
π

∑
a∈A

π(a|s)
[
r(s, a) + η∆(s) + γEs′∼p[Ṽ

⋆(s ′)]
]

(3)
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Solution Concept
From an optimization perspective, we can transfer the problem into a constraint
optimization problem

max
π
J (π) =

∑
a∈A

π(a|s)
[
r(s, a) + η∆(s) + γEs′∼p[Ṽ

⋆(s ′)]
]

s.t.
∑
a∈A

π(a|s) = 1
(4)

If ∆(s) = H(π(·|s)), we can write out the Lagrangian

L(s;λ) =
∑
a∈A

π(a|s)
[
r(s, a) + γEs′∼p[Ṽ

⋆(s ′)]
]
+ ηH(s)− λ(

∑
a∈A

π(a|s)− 1) (5)

• Objective is linear

• H is strictly-concave

• Slater condition is satisfied
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Solution Concept

Theorem (Optimality)

For all s ∈ S, the optimal value function Ṽ ⋆(s) and the optimal policy π̃⋆(a|s), satisfy

Ṽ ⋆(s) = η log
∑
a∈A

exp
1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s ′)]
)

π̃⋆(a|s) =
exp 1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s ′)]
)∑

a∈A
exp 1

η

(
r(s, a) + γEs′∼p[Ṽ ⋆(s ′)]

) (6)
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Solution Concept

Auxiliary Soft Action-Value Function

Q̃⋆(s, a) ≜ r(s, a) + γEs′∼p[Ṽ
⋆(s ′)] (7)

Proposition (An Inequality)

For any V : S → R that satisfies V (s) ≤ Ṽ ⋆(s) for all s ∈ S, then

Q(s, a) ≜ r(s, a) + γEs′∼p[V (s ′)] ≤ Q̃⋆(s, a) (8)
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Soft Policy Iteration

Soft Bellman Operator

T πQ(st , at) = r(st , at) + γEst+1 [V (st+1)], (9)

where
V (st) = Eat∼π[Q(st , at)− η log π(at |st)] (10)

Softmax Operator

G(Qπ) =
exp 1

η

(
Qπ)∑

a∈A
exp 1

η

(
Qπ)

(11)
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Soft Policy Iteration

• Soft policy evaluation: Qk+1 ← T πQk , limk→∞Qk+1 = Qπ

• Soft policy improvement: π̃ ← G(Qπ)

Soft Policy Iteration

Repeated application of soft policy evaluation and soft policy improvement to any π ∈ Π
converges to a policy π⋆ such that Qπ⋆

(s, a) ≥ Qπ(s, a) for all π ∈ Π and (s, a) ∈ S ×A.
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Main Result

Theorem (Convergent Points)

For any initial policy π0 and corresponding action-value function Qπ0 , the convergent
points induced by SPI satisfy Qπ⋆

(s, a) = Q̃⋆(s, a) and π⋆ = π̃⋆.

Proof.

The backward direction is obvious since π̃⋆ ∈ Π , that is, Qπ⋆ ≥ Q̃⋆. We only need to
show the other direction. Since Qπ⋆

is the fixed point of the soft Bellman operator T π⋆
,

thus it must satisfy the soft Bellman equation with a value function V π⋆
. And since Ṽ ⋆ is

the regularized value function that at most can be obtained, it must have V π⋆ ≤ Ṽ ⋆. By
the inequality Proposition, it follows that Qπ⋆ ≤ Q̃⋆. And since π⋆ ∈ Π, it immediately
follows that π⋆ = π̃⋆.
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Extendibility
If we are interested in constrain our policy w.r.t. some reference policy π̄, we can set
∆(s) = −DKL(π∥π̄) (which is strictly-concave for fixed π̄).

Conservative Optimal Points

V π⋆
(s) = η log

∑
a∈A

π̄(a|s) exp 1

η

(
r(s, a) + γEs′∼p[V

π⋆
(s ′)]

)
π⋆(a|s) =

π̄(a|s) exp 1
η

(
r(s, a) + γEs′∼p[V

π⋆
(s ′)]

)∑
a∈A

π̄(a|s) exp 1
η

(
r(s, a) + γEs′∼p[V π⋆(s ′)]

) (12)

Conservative Bellman Operator

T πQ(st , at) = r(st , at) + γEst+1 [V (st+1)],

V (st) = Eat∼π[Q(st , at)− η log
π(at |st)
π(at |st)

]
(13)
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Takeaways

• Translation from the arduous optimization of the LogSumExp to the repeated policy
evaluation and improvement is appealing.

• A generalized type of the regularizer such as the KL divergence, can follow another
optimization procedure.
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Any Qustions?
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