

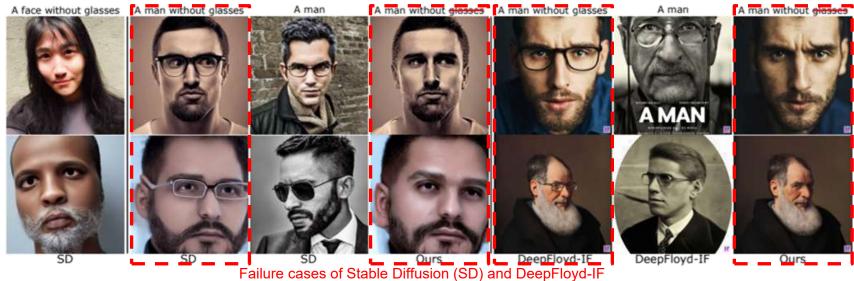
Get What You Want, Not What You Don't: Image Content Suppression for Text-to-Image Diffusion Models

Senmao Li¹ Joost van de Weijer² Taihang Hu¹ Fahad Shahbaz Khan^{3,4} Qibin Hou¹ Yaxing Wang^{1*} Jian Yang¹

¹VCIP, CS, Nankai University, ²Universitat Auto`noma de Barcelona, ³Mohamed bin Zayed University of AI, ⁴Linkoping University

Paper ID 291
Code: https://github.com/sen-mao/SuppressEOT

Existing text-to-image models can encounter challenges in effectively suppressing the generation \succ of the *negative target* (e.g., "glasses" in "A man without glasses")

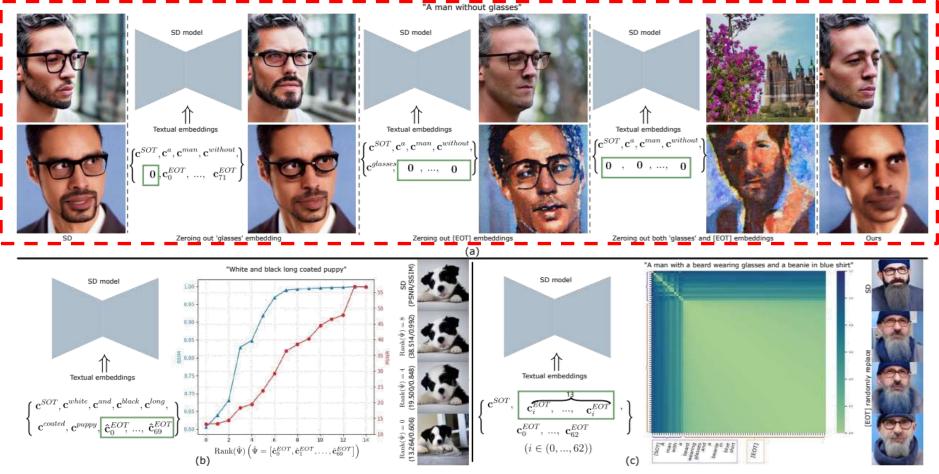


A man without glasses

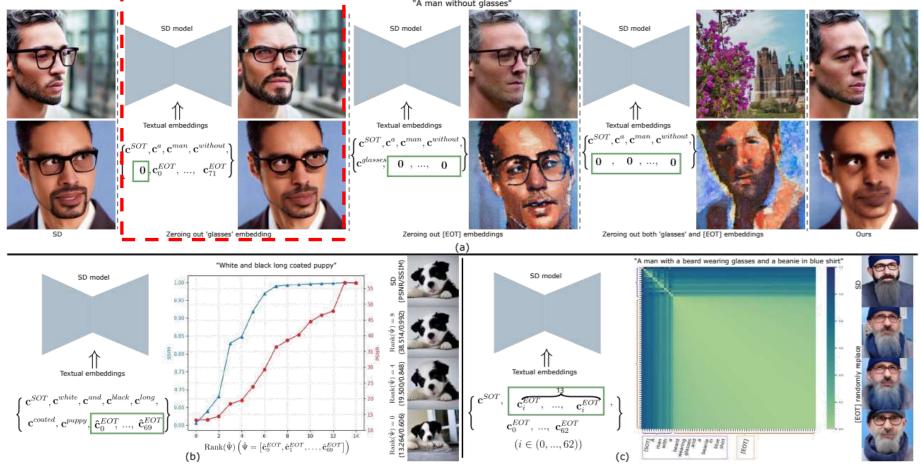
Additional failure cases

We aim to manipulate the text embeddings and remove unwanted content. We find that [EOT] embeddings also contain content information

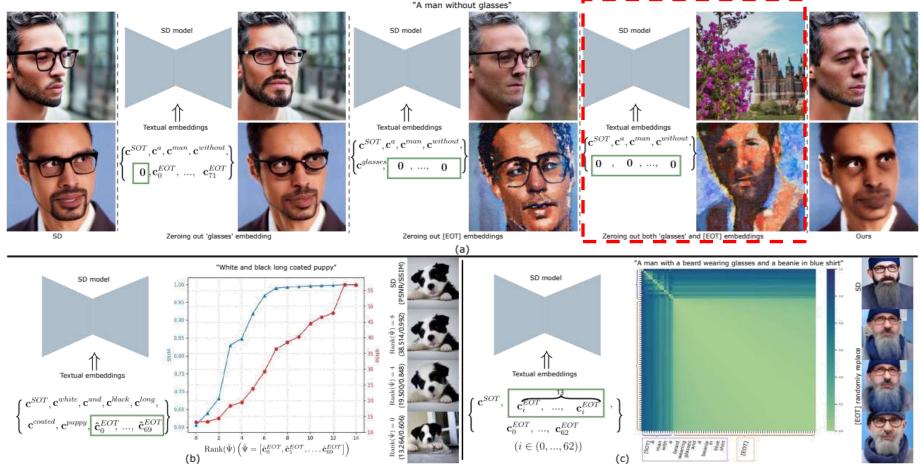
- > (a) The [EOT] embeddings contain **significant information** about the input prompt
- > (b) The [EOT] embeddings have the low-rank property, and contain redundant semantic information
- > (c) The various [EOT] embeddings are highly correlated



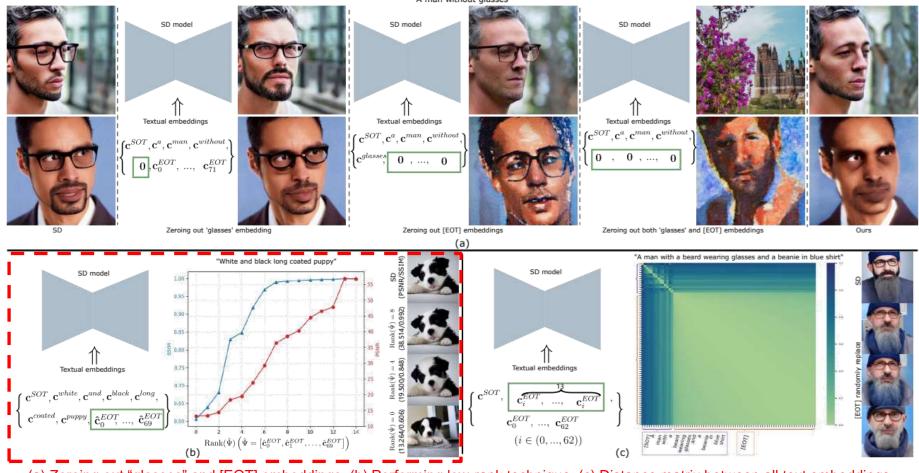
- > (a) The [EOT] embeddings contain **significant information** about the input prompt
- > (b) The [EOT] embeddings have the low-rank property, and contain redundant semantic information
- > (c) The various [EOT] embeddings are highly correlated



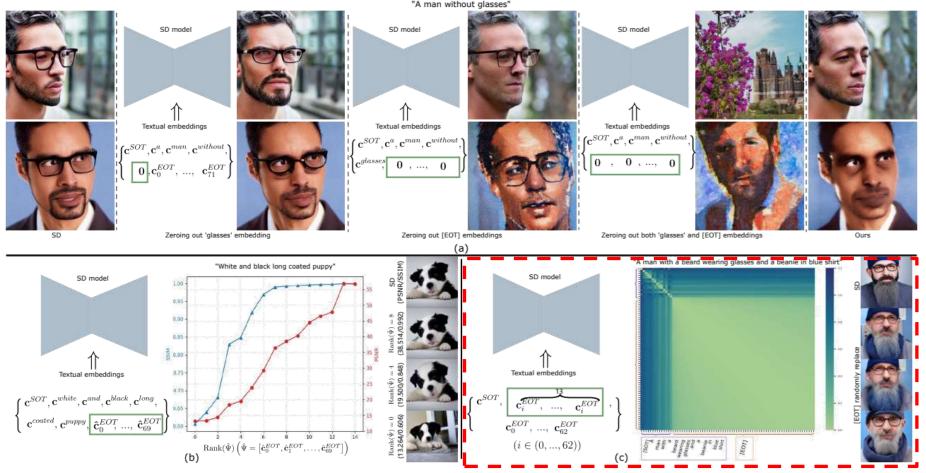
- > (a) The [EOT] embeddings contain **significant information** about the input prompt
- > (b) The [EOT] embeddings have the low-rank property, and contain redundant semantic information
- (c) The various [EOT] embeddings are highly correlated

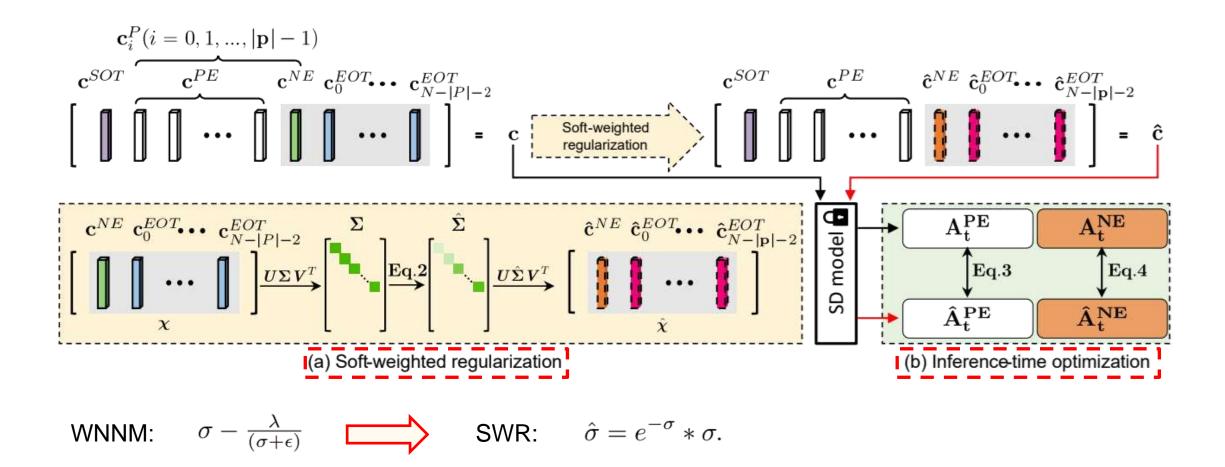


- > (a) The [EOT] embeddings contain **significant information** about the input prompt
- > (b) The [EOT] embeddings have the low-rank property, and contain redundant semantic information
- > (c) The various [EOT] embeddings are highly correlated

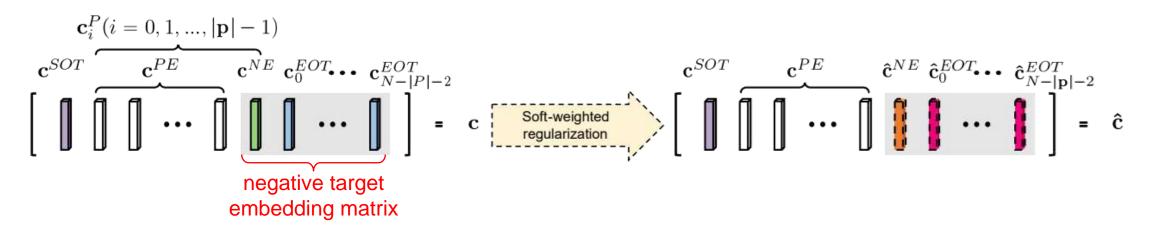


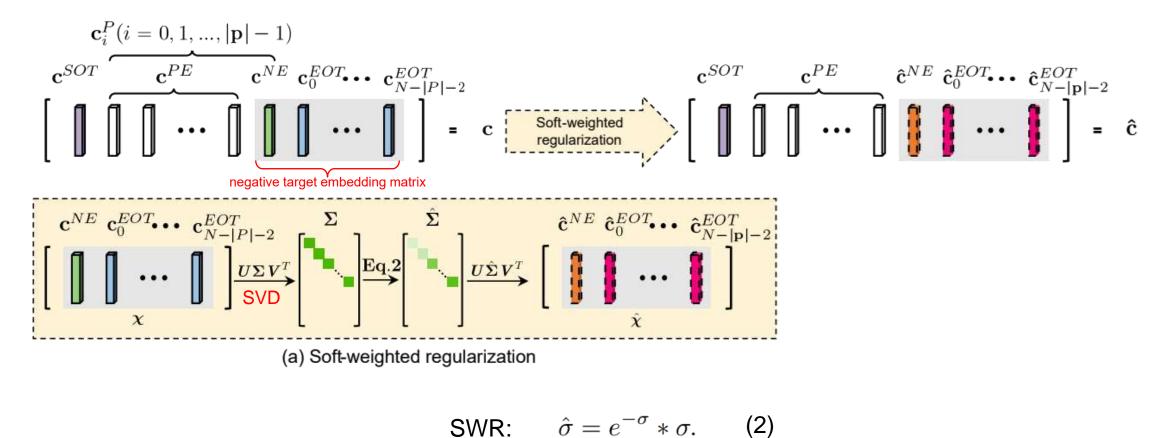
- > (a) The [EOT] embeddings contain **significant information** about the input prompt
- > (b) The [EOT] embeddings have the low-rank property, and contain redundant semantic information
- ➤ (c) The various [EOT] embeddings are highly correlated

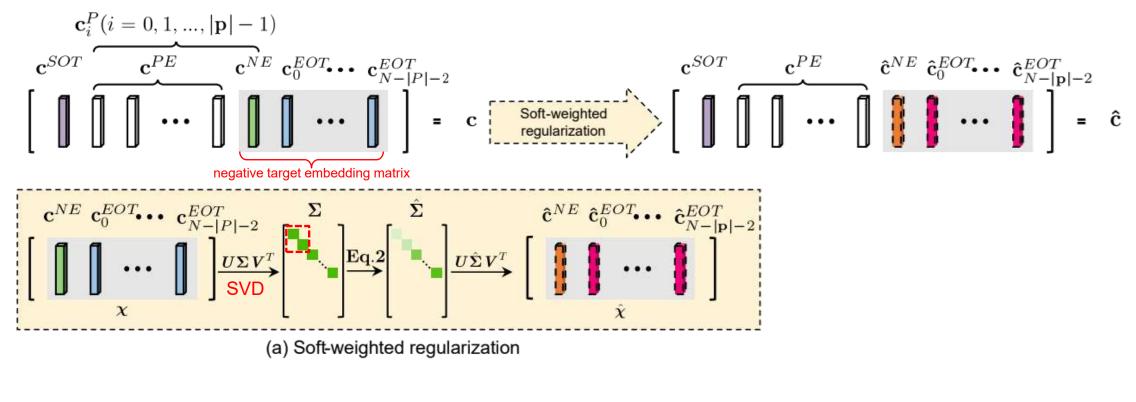




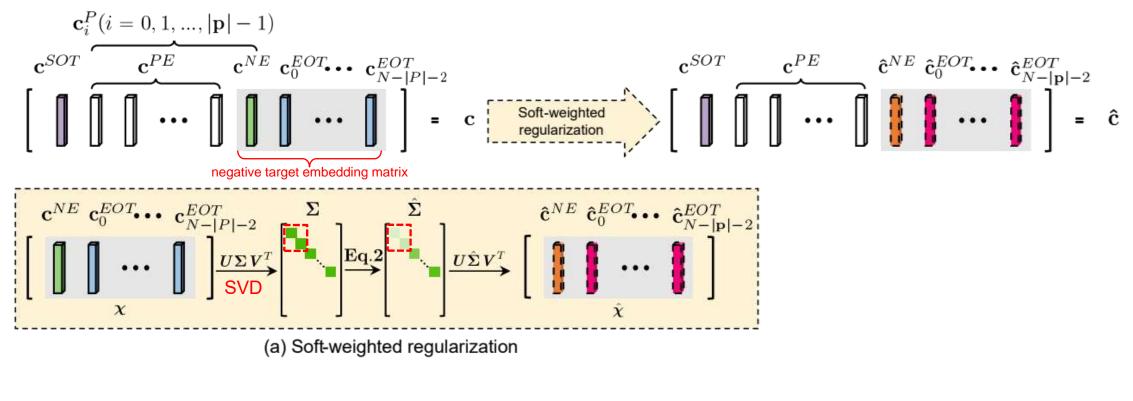
WNNM: Weighted nuclear norm minimization with application to image denoising





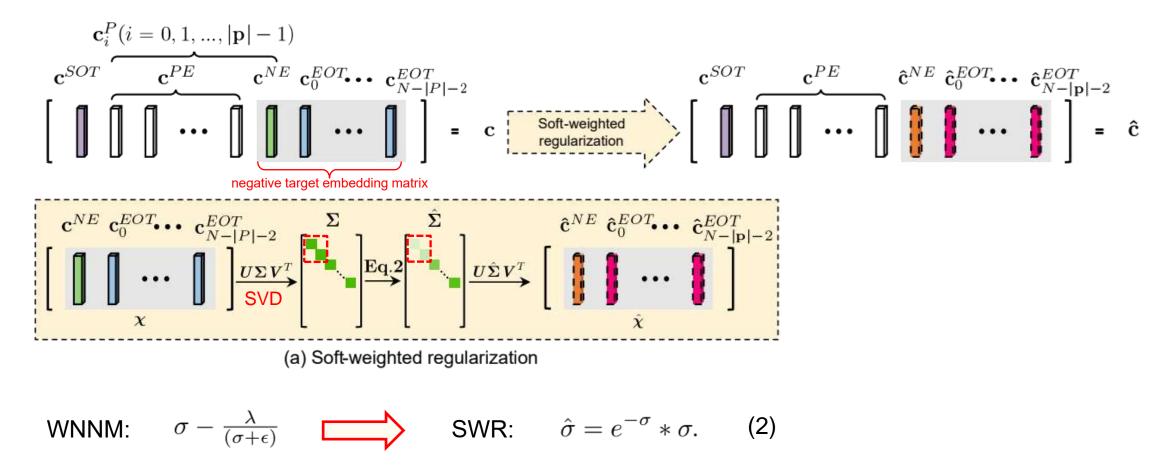


SWR:
$$\hat{\sigma} = e^{-\sigma} * \sigma$$
. (2)



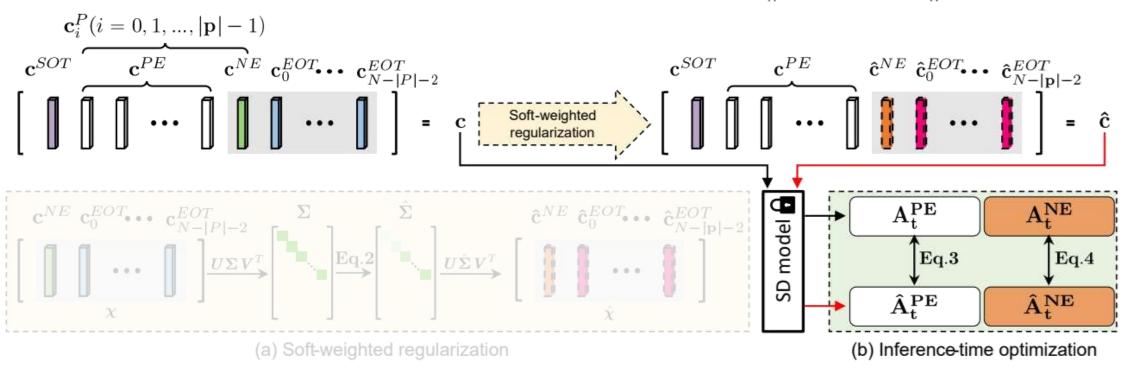
SWR:
$$\hat{\sigma} = e^{-\sigma} * \sigma$$
. (2)

> SWR regularizes the text embedding matrix and effectively suppresses the undesired content

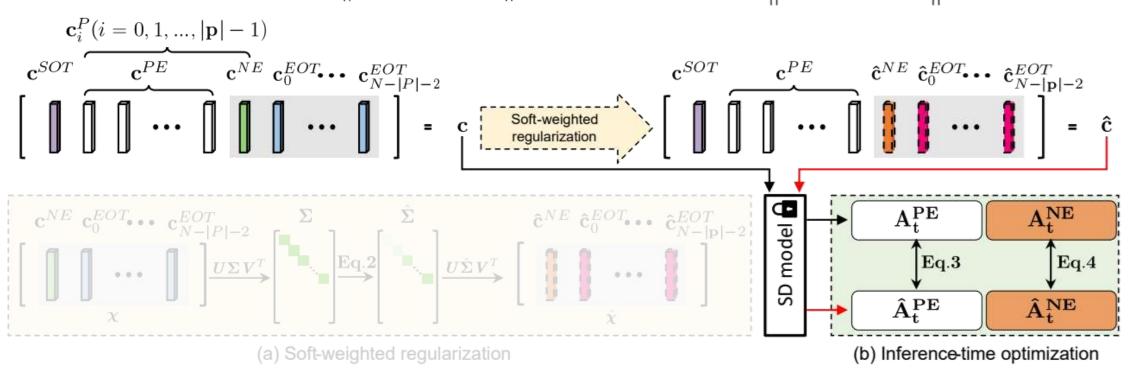


WNNM: Weighted nuclear norm minimization with application to image denoising

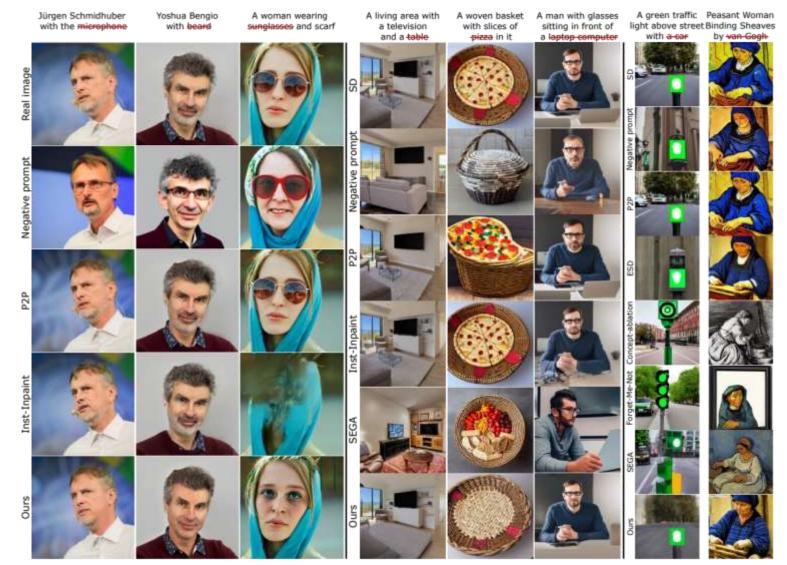
> ITO aims to further suppress the unwanted content generation of the prompt, and encourages the generation of desired content $\mathcal{L}_{nl} = - \left\| \hat{A}_{t}^{NE} - A_{t}^{NE} \right\|^{2}, \quad (4) \qquad \qquad \mathcal{L}_{pl} = \left\| \hat{A}_{t}^{PE} - A_{t}^{PE} \right\|^{2}. \quad (3)$



> ITO aims to further suppress the unwanted content generation of the prompt, and encourages the generation of desired content $\mathcal{L}_{nl} = - \left\| \hat{A}_{t}^{NE} - A_{t}^{NE} \right\|^{2}, (4) \qquad \qquad \mathcal{L}_{pl} = \left\| \hat{A}_{t}^{PE} - A_{t}^{PE} \right\|^{2}. (3)$

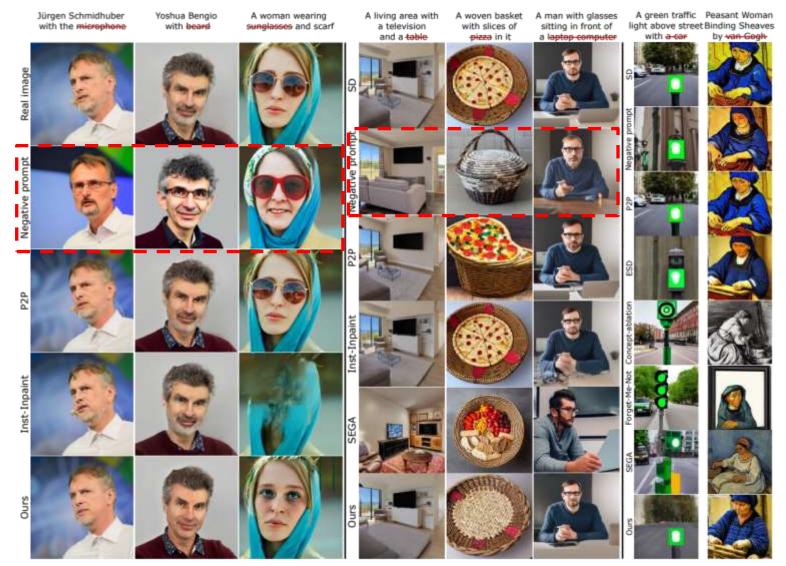


Results Real image (Left) and generated image (Middle and Right) suppression results



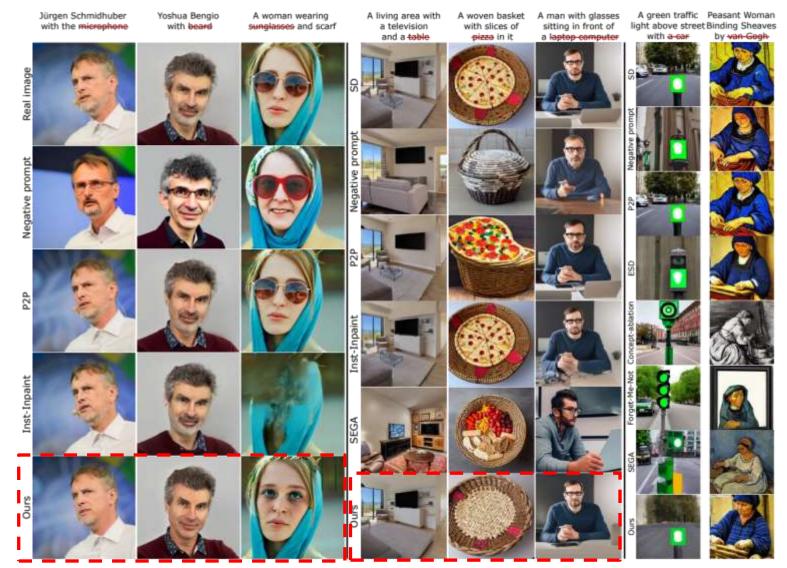
We have the best performance (the last row), without further finetuning the model

Results Real image (Left) and generated image (Middle and Right) suppression results



We have the best performance (the last row), without further finetuning the model

Results Real image (Left) and generated image (Middle and Right) suppression results



We have the best performance (the last row), without further finetuning the model

Results

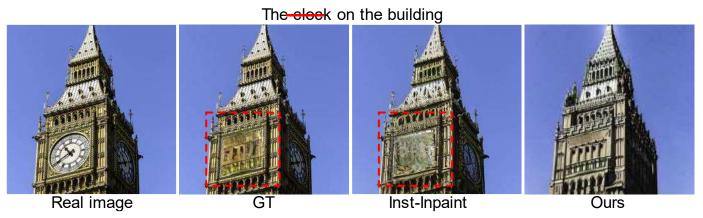


Table 2: Quantitative comparison on the GQA-Inpaint dataset for real image negative target suppression task.

Methods	Paired data	$FID\downarrow$	CLIP Acc↑	CLIP Acc (top5) ↑			
X-Decoder	1	6.86	69.9	46.5			
Inst-Inpaint	1	5.50	80.5	60.4			
Ours	X	13.87	92.8	83.3			

We achieve superior suppression results and higher CLIP Accuracy scores on the GQA-Inpaint dataset

Method	Real-image editing					Generated-Image editing								
	Random negative target			Random negative target		Negative target: Car			Negative target: Tyler Edlin		Negative target: Van Gogh			
	Clipscore.	↓ IFID†	DetScore	Clipscore.	, IFID†	DetScore.	Clipscore.	↓ IFID†	DetScore.	Clipscore.	IFID†	Clipscore	↓ IFID†	
Real image or SD (Generated image)	0.7986	0	0.3381	0.8225	0	0.4509	0.8654	0	0.6643	0.7414	0	0.8770	0	
Negative prompt	0.7983	175.8	0.2402	0.7619	169.0	0.1408	0.8458	151.7	0.5130	0.7437	233.9	0.8039	242.1	
P2P (Hertz et al., 2022)	0.7666	92.53	0.1758	0.8118	103.3	0.3391	0.8638	21.7	0.6343	0.7470	86.3	0.8849	139.7	
ESD (Gandikota et al., 2023)	-	-			1.4	10000000	0.7986	165.7	0.2223	0.6954	256.5	0.7292	267.5	
Concept-ablation (Kumari et al., 2023)	-	1.00	. e				0.7642	179.3	0.0935	0.7411	211.4	0.8290	219.9	
Forget-Me-Not (Zhang et al., 2023)			10		3.5		0.8701	158.7	0.5867	0.7495	227.9	0.8391	203.5	
Inst-Inpaint (Yildirim et al., 2023)	0.7327	135.5	0.1125	0.7602	150.4	0.1744	0.8009	126.9	0.2361					
SEGA (Brack et al., 2023)	-	-		0.7960	172.2	0.3005	0.8001	168.8	0.4767	0.7678	209.9	0.8730	175.0	
Ours	0.6857	166.3	0.0384	0.6647	176.4	0.1321	0.7426	206.8	0.0419	0.7402	217.7	0.6448	307.5	

Table 1: Comparison with baselines. The best results are in bold, and the second best results are underlined.

For real-image suppression, we achieve the best score in both Clipscore and DetScore

Results

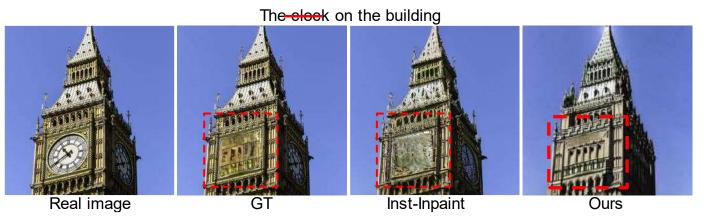


Table 2: Quantitative comparison on the GQA-Inpaint dataset for real image negative target suppression task.

Methods	Paired data	$FID\downarrow$	CLIP Acc ↑	CLIP Acc (top5) ↑			
X-Decoder	1	6.86	69.9	46.5			
Inst-Inpaint	1	5.50	80.5	60.4			
Ours	X	13.87	92.8	83.3			

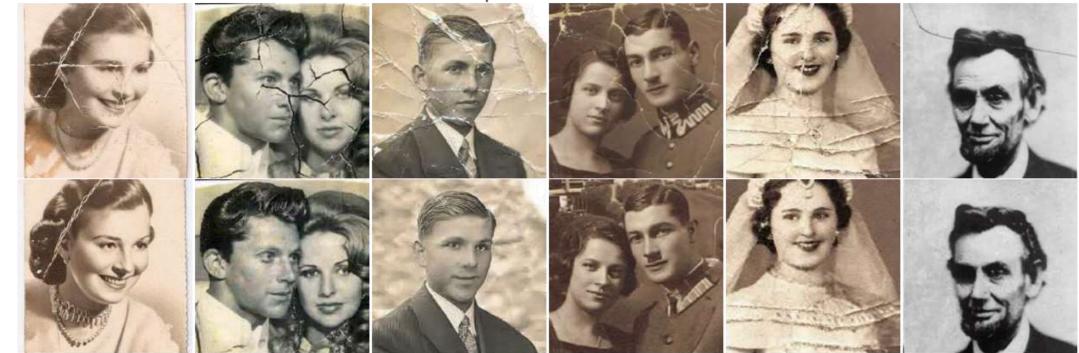
We achieve superior suppression results and higher CLIP Accuracy scores on the GQA-Inpaint dataset

Method	Real-image editing					Generated-image editing								
	Random negative target			Random negative target			Negative target: Car			Negative target: Tyler Edlin		Negative target: Van Gogh		
	Clipscore.	, IFID†	DetScore,	Clipscore	↓ IFID†	DetScore.	Clipscore	↓ IFID†	DetScore	↓ Clipscore.	↓ IFID†	Clipscore	↓ IFID†	
Real image or SD (Generated image)	0.7986	0	0.3381	0.8225	0	0.4509	0.8654	0	0.6643	0.7414	0	0.8770	0	
Negative prompt	0.7983	175.8	0.2402	0.7619	169.0	0.1408	0.8458	151.7	0.5130	0.7437	233.9	0.8039	242.1	
P2P (Hertz et al., 2022)	0.7666	92.53	0.1758	0.8118	103.3	0.3391	0.8638	21.7	0.6343	0.7470	86.3	0.8849	139.7	
ESD (Gandikota et al., 2023)	-	-		100000	1000 C	100000	0.7986	165.7	0.2223	0.6954	256.5	0.7292	267.5	
Concept-ablation (Kumari et al., 2023)	-	1.00	. +	1.00			0.7642	179.3	0.0935	0.7411	211.4	0.8290	219.9	
Forget-Me-Not (Zhang et al., 2023)			10		1.5	-	0.8701	158.7	0.5867	0.7495	227.9	0.8391	203.5	
Inst-Inpaint (Yildirim et al., 2023)	0.7327	135.5	0.1125	0.7602	150.4	0.1744	0.8009	126.9	0.2361					
SEGA (Brack et al., 2023)	-	-		0.7960	172.2	0.3005	0.8001	168.8	0.4767	0.7678	209.9	0.8730	175.0	
Ours	0.6857	166.3	0.0384	0.6647	176.4	0.1321	0.7426	206.8	0.0419	0.7402	217.7	0.6448	307.5	

Table 1: Comparison with baselines. The best results are in bold, and the second best results are underlined.

For real-image suppression, we achieve the best score in both Clipscore and DetScore

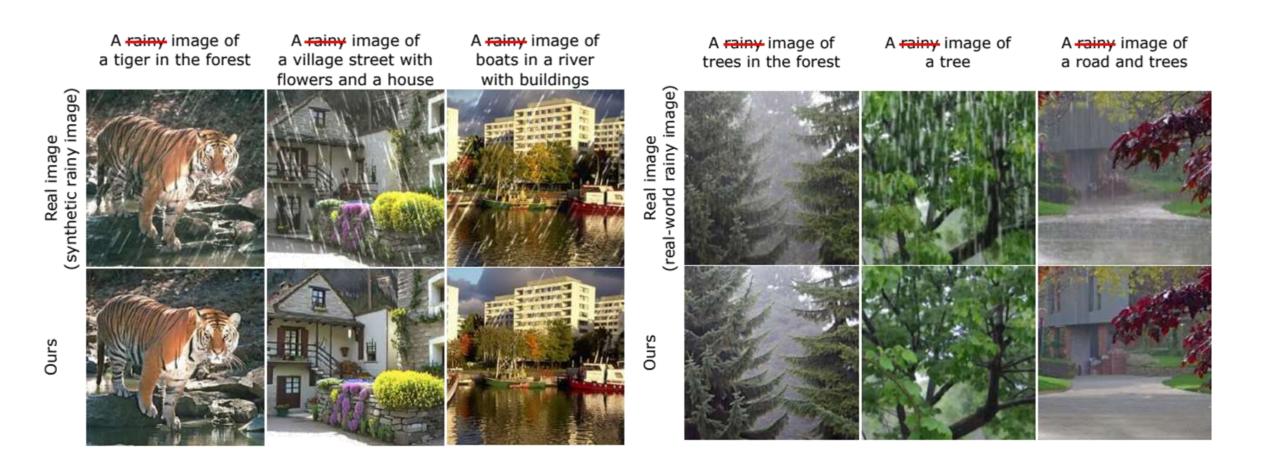
Additional results (Cracks removal results)



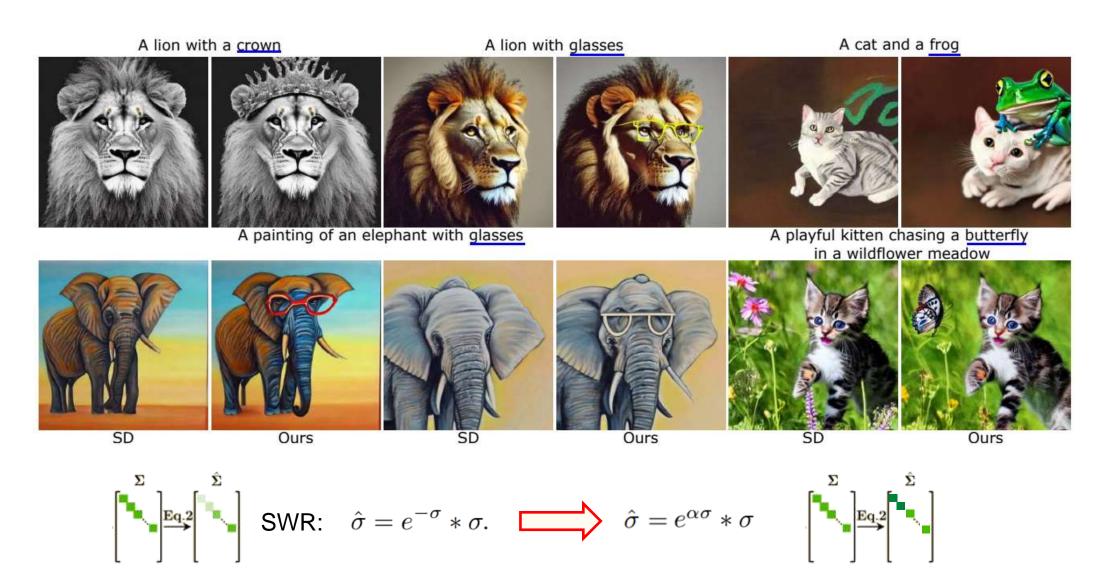
A photo with cracks

Real image

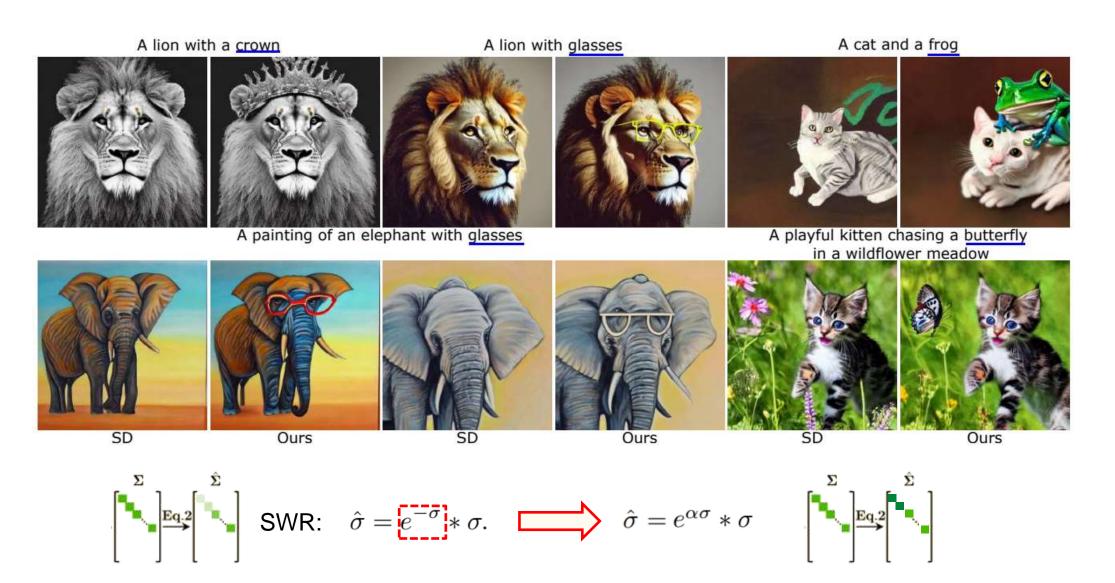
Additional results (Rain removal for synthetic & real-world rainy image)



Additional results (Generating subjects for generated image)



Additional results (Generating subjects for generated image)



Additional results (Generating subjects for generated image)

A lion with a crown A lion with glasses A cat and a frog A painting of an elephant with glasses A playful kitten chasing a butterfly in a wildflower meadow SD Ours SD SD Ours Ours $\hat{\sigma} = e^{\alpha \sigma} * \sigma$ $\hat{\sigma} = e^{\alpha \sigma} * \sigma$

Additional results (Adding subjects for real image)

SWR:
$$\hat{\sigma} = e^{\alpha \sigma} * \sigma$$

Additional results (Replacing subject in the real image with another)

SWR:
$$\hat{\sigma} = e^{\alpha\sigma} * \sigma$$

Code: <u>https://github.com/sen-mao/SuppressEOT</u>

Thanks