

Matcher: Segment Anything with One Shot Using All-Purpose Feature Matching

Yang Liu

Zhejiang University, China yangliu9610@zju.edu.cn

Hao Chen

Zhejiang University, China haochen.cad@zju.edu.cn

Muzhi Zhu

Zhejiang University, China zhumuzhi@zju.edu.cn

Xinlong Wang

Beijing Academy of Artificial Intelligence wangxinlong@baai.ac.cn Hengtao Li

Zhejiang University, China liht@zju.edu.cn

Chunhua Shen

Zhejiang University, China chunhuashen@zju.edu.cn

Motivation

Large language models (LLMs) show powerful zero-shot and few-shot generalization and solve various language tasks well.

How to use vision foundation models (VFMs) to perform various perception tasks in a training-free way?

This work aims to find a new visual research paradigm: investigating the utilization of VFMs for effectively addressing a wide range of perception tasks, e.g., semantic segmentation, part segmentation, and video object segmentation, without training.

Method

- Correspondence Matrix Extraction
- Prompts Generation
- Controllable Masks Generation

Given inputs \mathbf{x}_r and \mathbf{x}_t , the image encoder outputs patch-level features $\mathbf{z}_r, \mathbf{z}_t \in \mathbb{R}^{H \times W \times C}$. We define the correspondence matrix $\mathbf{S} \in \mathbb{R}^{HW \times HW}$ as follows:

$$(\mathbf{S})_{ij} = \frac{\mathbf{z}_r^i \cdot \mathbf{z}_r^j}{\|\mathbf{z}_r^i \cdot \| \cdot \|\mathbf{z}_r^j\|}$$

The above formulation can be denoted as $\mathbf{S} = sim(\mathbf{z}_r, \mathbf{z}_t)$.

Patch-Level Matching

Robust Prompt Sampler

Cluster \hat{P} based on locations into K clusters \hat{P}_k . Three types of subsets are sampled as prompts:

- Part-level prompts are sampled within each cluster $P^p \subset \hat{P}_k$.
- Instance-level prompts are sampled within all matched points $P^p \subset \hat{P}$.
- Global prompts are sampled within the set of cluster centers $P^g \subset C$ to encourage coverage, where $C = \{c_1, c_2, ..., c_k\}$ are the cluster centers.

Three effective metrics to select high-quality masks :

• *emd:* structural distance between dense semantic features inside the masks to determine mask relevance.

•
$$purity = \frac{Num(\hat{P}_{mp})}{Area(mp)}$$
: higher degree of *purity* promotes the selection of part-level masks.

•
$$coverage = \frac{Num(\hat{P}_{mp})}{Num(\hat{P})}$$
: higher degree of *coverage* promotes the selection of instance-level masks.

The false-positive mask fragments can be filtered by:

 $score = \alpha \cdot (1 - emd) + \beta \cdot purity \cdot coverage^{\lambda}$

Mathada	Venue	$COCO-20^i$		FSS-1000		LVIS-92 ^{i}		
Methods		one-shot	few-shot	one-shot	few-shot	one-shot	few-shot	
specialist model								
HSNet (Min et al., 2021)	ICCV'21	41.2	49.5	86.5	88.5	17.4	22.9	
VAT (Hong et al., 2022)	ECCV'22	41.3	47.9	90.3	90.8	18.5	22.7	
FPTrans (Zhang et al., 2022a)	NeurIPS'22	47.0	58.9	-	-	-	-	
MSANet (Iqbal et al., 2022)	arXiv'22	51.1	56.8	-	-	-	-	
generalist model								
Painter (Wang et al., 2023a)	CVPR'23	33.1	32.6	61.7	62.3	10.5	10.9	
SegGPT (Wang et al., 2023b)	ICCV'23	56.1	67.9	85.6	89.3	18.6	25.4	
PerSAM ^{†‡} (Zhang et al., 2023)	V:???	23.0	-	71.2	-	11.5	-	
PerSAM-F [‡]	araiv 25	23.5	-	75.6	-	12.3	-	
Matcher ^{†‡}	this work	52.7	60.7	87.0	89.6	33.0	40.0	

Table 1: Results of few-shot semantic segmentation on $COCO-20^i$, FSS-1000, and LVIS-92^{*i*}. Gray indicates the model is trained by in-domain datasets. \dagger indicates the training-free method. \ddagger indicates the method using SAM. Note that the training data of SegGPT includes COCO.

Mathada	Vanua	PASCAL-Part					PACO-Part				
Methods	venue	animals	indoor	person	vehicles	mean	F0	F1	F2	F3	mean
HSNet (Min et al., 2021)	ICCV'21	21.2	53.0	20.2	35.1	32.4	20.8	21.3	25.5	22.6	22.6
VAT (Hong et al., 2022)	ECCV'22	21.5	55.9	20.7	36.1	33.6	22.0	22.9	26.0	23.1	23.5
Painter (Wang et al., 2023a)	CVPR'23	20.2	49.5	17.6	34.4	30.4	13.7	12.5	15.0	15.1	14.1
SegGPT (Wang et al., 2023b)	ICCV'23	22.8	50.9	31.3	38.0	35.8	13.9	12.6	14.8	12.7	13.5
PerSAM ^{†‡} (Zhang et al., 2023)	arXiv'23	19.9	51.8	18.6	32.0	30.1	19.4	20.5	23.8	21.2	21.2
Matcher ^{†‡}	this work	37.1	56.3	32.4	45.7	42.9	32.7	35.6	36.5	34.1	34.7

Table 2: Results of one-shot part segmentation on PASCAL-Part and PACO-Part. † indicates the training-free method. ‡ indicates the method using SAM.

Mathada	Vanua	DAVIS 2017 val			DAVIS 2016 val			
Methods	venue	J&F	J	F	J&F	J	F	
with video data								
AGAME (Johnander et al., 2019)	CVPR'19	70.0	67.2	72.7	-	-	-	
AGSS (Lin et al., 2019)	ICCV'19	67.4	64.9	69.9	-	-	-	
AFB-URR (Liang et al., 2020)	NeurIPS'20	74.6	73.0	76.1	-	-	-	
AOT (Yang et al., 2021)	NeurIPS'21	85.4	82.4	88.4	92.0	90.7	93.3	
SWEM (Lin et al., 2022)	CVPR'22	84.3	81.2	87.4	91.3	89.9	92.6	
XMem (Cheng & Schwing, 2022)	ECCV'22	87.7	84.0	91.4	92.0	90.7	93.2	
without video data								
Painter (Wang et al., 2023a)	CVPR'23	34.6	28.5	40.8	70.3	69.6	70.9	
SegGPT (Wang et al., 2023b)	ICCV'23	75.6	72.5	78.6	83.7	83.6	83.8	
PerSAM ^{†‡} (Zhang et al., 2023)	orViv/22	60.3	56.6	63.9	-	-	-	
PerSAM-F [‡]	alativ 25	71.9	69.0	74.8	-	-	-	
Matcher ^{†‡}	this work	79.5	76.5	82.6	86.1	85.2	86.7	

Table 3: Results of video object segmentation on DAVIS 2017 val, and DAVIS 2016 val. Gray indicates the model is trained on target datasets with video data. † indicates the training-free method. ‡ indicates the method using SAM.

Visualization

(a) Object and object part segmentation.

(b) Cross-style object and object part segmentation.

Visualization

Thanks for listening.