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EmerNeRF

® Scalable: Everything is self-supervised. No human annotation is needed.
® Realistic: State-of-the-art photorealistic reconstruction. Perfect for simulations.
® All-in-one-pipeline:

® Differentiating static/dynamic objects

® Estimating 3D scene flows

® Auto-labeling semantic occupancies



EmerNeRF Overview
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EmerNeRF Overview
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EmerNeRF Overview

( )
Building representations

But our world is dynamic

Building Spatial-temporal scene representations
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EmerNeRF Overview
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EmerNeRF Overview
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Why neural field scene representation?

EmerNeRF Capabilities

o With self-supervision, it can do

e |ogReplay

o Static / Dynamic Decomposition

o Motion Estimation Original Camera Log

e Semantics Understanding

o Novel View Synthesis

o (Occupancy Reconstruction

Rendered Camera Log



Why neural field scene representation?

EmerNeRF Capabilities
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Why neural field scene representation?

EmerNeRF Capabilities

e With self-supervision, it can do :

o |ogReplay e TE
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Original Camera Log
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Why neural field scene representation?

EmerNeRF Capabilities

o With self-supervision, it can do

o |ogReplay

o Static / Dynamic Decomposition

o Motion Estimation Original Camera Log
e Semantics Understanding
o Novel View Synthesis

o (Occupancy Reconstruction

Scene Flow estimation.



Why neural field scene representation?

EmerNeRF Capabilities

+ With self-supervision, it can o snowresuts or  scene 100

o |_Og Replay 185 _ =0 R ¥ PR B Eerged Forward Flow

o Static / Dynamic Decomposition

Left: Ground Truth Flow | Right: Predicted Flow

e Motion Estimation
e Semantics Understanding
o Novel View Synthesis

o (Occupancy Reconstruction
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“Interact with the plot using the mouse. To optimize page load times, results are displayed every second, showcasing a sampled 1/6 of the
points per frame.



Why neural field scene representation?

EmerNeRF Capabilities

o With self-supervision, it can do Rendered RGB
o |ogReplay 2
o Static / Dynamic Decomposition
e Motion Estimation
e Semantics Understanding
o Novel View Synthesis

o (Occupancy Reconstruction

econd 0

“Interact with the plot using the mouse. To optimize page load times, results are displayed every second. Note: 2D and 3D features are
visualized distinctly and may have different color representations. Voxel size is 0.15m.



Why neural field scene representation?

EmerNeRF Capabilitis

o With self-supervision, it can do Lo

Rendered RGB

——ry

def@d Depth

’

~ M
I_()g Replay Decomposed Dynamic RGB

Static / Dynamic Decomposition
Decomposed Dynamic Depth

Motion Estimation

2

Semantics Understanding

Emerged Forward Flow

Novel View Synthesis

Decomposéd static RGB

Occupancy Reconstruction

|
i

g

Decomposed Static depth

*iendere “Depth

——

¥ N
‘ ‘\
Y
NP
-

Decomposed Dynamic RGB

L —

Decomposed Dynamic Depth




Camera Images

Why neural field scene representation?
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Camera Images
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EmerNeRF: Emergent Spatial-Temporal Scene Decomposition
via Self-Supervision

» Self-supervised learning to reconstruct dynamic scenarios at scale.
» Through self-supervision, EmerNeRF learns:

» Static-dynamic scene decomposition

HProject Page

= [0

» Highly accurate 3D scene flows

o Artifacts-free foundational models’ features

» Please refer to our project page and open-sourced code for more details:
- Project page: https://emernert.github.io/
- Code Page: https://github.com/NVlabs/EmerNeRF

:
o

Thanks for watching!
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