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Real-world sequential decision making

Example of sequential decision-making in healthcare

We aim to optimize such decisions as a Reinforcement Learning (RL) problem.

May 2024 Towards assessing risk-return tradeoff of OPE 2

Other applications include..

• Robotics
• Education
• Recommender systems
• …

Sequential decision-making 
is everywhere!



Online and Offline Reinforcement Learning (RL)

• Online RL – 
• learns a policy through interaction
• may harm the real system with bad action choices

• Offline RL – 
• learns and evaluate a policy solely from offline data
• can be a safe alternative for online RL
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Particularly focusing on
Off-Policy Evaluation (OPE) 



Why is Off-Policy Evaluation (OPE) important?

The performance of production policy heavily depends on the policy selection.
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Off-Policy Evaluation (OPE)
evaluates the performance of new policies using
logged data, and is used for policy selection.

(various hyperparams.)
(various algorithms)



Content

• Introduction to Off-Policy Evaluation (OPE) of RL policies

• Issues of the existing metrics of OPE

• Our proposal: Evaluating the risk-return tradeoff of OPE via SharpeRatio@k

• Case Study: Why should we use SharpeRatio@k?
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Introduction to Off-Policy Evaluation (OPE)
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Preliminary: Markov Decision Process (MDP)
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MDP is defined as                          .

•           : state

•           : action 

•           : reward

•                            : timestep

•                : state transition

•                : reward function

•               : discount

▼ our interest



Estimation Target of OPE

We aim to estimate the expected trajectory-wise reward (i.e., policy value):
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OPE estimator logged data collected by
a past (behavior) policy

counterfactuals &
distribution shift



Example of OPE Estimators

We will briefly review the following OPE estimators.

• Direct Method (DM)

• (Per-Decision) Importance Sampling (PDIS)

• Doubly Robust (DR)

• (State-action) Marginal Importance Sampling (MIS)

• (State-action) Marginal Doubly Robust (MDR)
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Note: we describe DR and MDR in detail in Appendix.



Direct Method (DM) [Le+,19]

DM trains a value predictor and estimates the policy value from the prediction. 

Pros:   variance is small.

Cons:  bias can be large when !𝑄 is inaccurate.
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value prediction

estimating expected reward 
at future timesteps

empirical average
(𝑛 is the data size and 𝑖 is the index)



Per-Decision Importance Sampling (PDIS) [Precup+,00]

PDIS applies importance sampling to correct the distribution shift.

Pros:   unbiased (under the common support assumption:                                             ).

Cons:  variance can be exponentially large as 𝑡 grows.
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importance weight
= product of step-wise   
iimportance weights



State-action Marginal IS (MIS) [Uehara+,20]

To alleviate variance, MIS considers IS on the (state-action) marginal distribution.

Pros:   unbiased when $𝜌 is correct and reduces variance compared to PDIS.

Cons:  accurate estimation of $𝜌 is often challenging, resulting in some bias.
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(estimated) marginal importance weight

state-action visitation probability 



Summary of OPE

• Off-Policy Evaluation (OPE) aims to evaluate the expected performance of a policy

   using only offline logged data.

• However, counterfactual estimation and distribution shift between 𝜋 and 𝜋𝑏 causes

   either bias or variance issues.

In the following, we discuss.. 

“How to assess OPE estimators for a reliable policy selection in practice?”
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Summary of OPE

• Off-Policy Evaluation (OPE) aims to evaluate the expected performance of a policy

   using only offline logged data.

• However, counterfactual estimation and distribution shift between 𝜋 and 𝜋𝑏 causes

   either bias or variance issues.

In the following, we discuss.. 

“How to assess OPE estimators for a reliable policy selection in practice?”
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We discuss the RL settings, but the same idea is 
applicable to contextual bandits as well.



Issues of the existing metrics of OPE
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Conventional metrics focus on “accuracy”

There are three metrics used to assess the accuracy of OPE and policy selection.

• Mean squared error (MSE) – “accuracy” of policy evaluation

• Rank correlation (RankCorr) – “accuracy” of policy alignment

• Regret – “accuracy” of policy selection
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Conventional metrics focus on “accuracy”

There are three metrics used to assess the accuracy of OPE and policy selection.

• Mean squared error (MSE) – “accuracy” of policy evaluation [Voloshin+,21]
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estimation true value



Conventional metrics focus on “accuracy”

There are three metrics used to assess the accuracy of OPE and policy selection.

• Rank correlation (RankCorr) – “accuracy” of policy alignment [Fu+,21]
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1
2

3
4

5

6
7estimation true ranking



Conventional metrics focus on “accuracy”

There are three metrics used to assess the accuracy of OPE and policy selection.

• Regret – “accuracy” of policy selection [Doroudi+,18]
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performance 
of the true best policy

performance 
of the estimated best policy



Existing metrics are suitable for the top-1 selection

Three metrics can assess how likely an OPE estimator chooses a near-best policy.
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directly chooses 
the production policy via OPE

low MSE

high RankCorr

low Regret

near-best
production policy

?

✔

✔

assessment of OPE



Existing metrics are suitable for the top-1 selection

Three metrics can assess how likely an OPE estimator chooses a near-best policy.

.. but in practice, we cannot sorely rely on the OPE result.
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directly chooses 
the production policy via OPE

low MSE

high RankCorr

low Regret

near-best
production policy

?

✔

✔

assessment of OPE



Research question: How to assess the top-𝑘 selection?

We consider the following two-stage policy selection for practical application:
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OPE as 
a screening process

combine A/B test results
for policy selection

・Are existing metrics 
enough to assess the
top-𝑘 policy selection?

・How should we assess
OPE estimators accounting
safety during A/B tests?

…



Existing metrics fail to distinguish two estimators (1/2)

Three existing metrics report almost the same values for the estimators X and Y.

Existing metrics fail to distinguish underestimation vs. overestimation.
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estimator X estimator Y

MSE 11.3 11.3

RankCorr 0.413 0.413

Regret 0.0 0.0

Top-3 policy portfolio is very different from each other. 



Existing metrics fail to distinguish two estimators (2/2)

Three existing metrics report almost the same values for the estimators W and Z.

Existing metrics fail to distinguish conservative vs. high-stakes.
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estimator W estimator Z

MSE 60.1 58.6

RankCorr 0.079 0.023

Regret 9.0 9.0

estimator Z is uniform random and thus is riskier.



Summary of the existing metrics

• Existing metrics focus on “accuracy” of OPE or the downstream policy selection. 

• However, they are not quite suitable for the practical top-𝑘 policy selection.

• Existing metrics cannot take the risk of deploying poor policies into account.

• Existing metrics fail to distinguish very different OPE estimators:

• (overestimation vs. underestimation) and (conservative vs. high-stakes)

How to assess OPE estimators for the top-𝒌 policy selection?
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Our proposal: Evaluating the risk-return
tradeoff of OPE via SharpeRatio@k
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What is the desirable property of the top-𝑘 metric?

Existing metrics did not consider: 

the risk of deploying poor performing policies in online A/B tests

A new metric should tell:

whether an OPE estimator is efficient wrt the risk-return tradeoff
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+ after the A/B test+ during the A/B test

risk and safety performance of the chosen policyWhat matters?



Proposed metric: SharpeRatio@k

Inspired by the portfolio management in finance, we define SharpeRatio in OPE. 
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The best policy performance 
among the top-𝑘 policies.

Standard deviation
among the top-𝑘 policies.



Proposed metric: SharpeRatio@k

Inspired by the portfolio management in finance, we define SharpeRatio in OPE. 
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measures the return over the risk-free baseline.

measures the risk experienced during online A/B tests.



Example: Calculating SharpeRatio@3

Let’s consider the case of performing top-3 policy selection.
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policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 ?

candidate 2 1.2 ?

candidate 3 1.0 ?

candidate 4 0.8 ?

candidate 5 0.5 ?



Example: Calculating SharpeRatio@3

Let’s consider the case of performing top-3 policy selection.
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policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 ?

candidate 2 1.2 ?

candidate 3 1.0 ?

candidate 4 0.8 ?

candidate 5 0.5 ?

A/B test



Example: Calculating SharpeRatio@3

Let’s consider the case of performing top-3 policy selection.
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policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 1.2 0.5

candidate 3 1.0 1.2
candidate 4 0.8 ?

candidate 5 0.5 ?

denominator 
= best@𝑘 - 𝐽(𝜋𝑏)
= 2.0 ‒ 1.0 = 1.0



Let’s consider the case of performing top-3 policy selection.

Example: Calculating SharpeRatio@3
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policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 1.2 0.5

candidate 3 1.0 1.2
candidate 4 0.8 ?

candidate 5 0.5 ?

numerator 
= std@𝑘

= 1/𝑘 ∑#$%& 𝐽 𝜋𝑖 −mean@𝑘 2

= 0.75

denominator 
= best@𝑘 - 𝐽(𝜋𝑏)
= 2.0 ‒ 1.0 = 1.0



Let’s consider the case of performing top-3 policy selection.

Example: Calculating SharpeRatio@3
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policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 1.2 0.5

candidate 3 1.0 1.2
candidate 4 0.8 ?

candidate 5 0.5 ?

numerator 
= std@𝑘

= 1/𝑘 ∑#$%& 𝐽 𝜋𝑖 −mean@𝑘 2

= 0.75

denominator 
= best@𝑘 - 𝐽(𝜋𝑏)
= 2.0 ‒ 1.0 = 1.0

SharpeRatio = 1.0 / 0.75 = 1.33..



Let’s consider the case of performing top-3 policy selection.

Example: Calculating SharpeRatio@3
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SharpeRatio = 1.33..

policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 0.8 ?

candidate 3 1.0 1.2
candidate 4 1.2 1.0

candidate 5 0.5 ?

policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 1.2 0.5

candidate 3 1.0 1.2
candidate 4 0.8 ?

candidate 5 0.5 ?

SharpeRatio = 1.92..



Let’s consider the case of performing top-3 policy selection.

Example: Calculating SharpeRatio@3
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SharpeRatio = 1.33..

policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 0.8 ?

candidate 3 1.0 1.2
candidate 4 1.2 1.0

candidate 5 0.5 ?

policy value estimated 
by OPE

true value
of the policy

behavior  𝜋𝑏 - 1.0

candidate 1 1.8 2.0

candidate 2 1.2 0.5

candidate 3 1.0 1.2
candidate 4 0.8 ?

candidate 5 0.5 ?

SharpeRatio = 1.92..

Lower risk of deploying detrimental policies! 



Case study 
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SharpeRatio enables informative assessments (1/2)

Let’s compare the case where the existing metrics failed to distinguish the two.

Can SharpeRatio tell the difference in underestimation vs. overestimation?
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estimator X estimator Y

MSE 11.3 11.3

RankCorr 0.413 0.413

Regret 0.0 0.0

Top-3 policy portfolio is very different from each other. 



SharpeRatio enables informative assessments (1/2)

Let’s compare the case where the existing metrics failed to distinguish the two.

SharpeRatio values the safer estimator more than the riskier estimator.
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SharpeRatio enables informative assessments (2/2)

Three existing metrics reports almost the same values for the estimators W and Z.

Can SharpeRatio tell the difference in conservative vs. high-stakes?
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estimator W estimator Z

MSE 60.1 58.6

RankCorr 0.079 0.023

Regret 9.0 9.0

estimator Z is uniform random and thus is riskier.



SharpeRatio enables informative assessments (1/2)

Let’s compare the case where the existing metrics failed to distinguish the two.

SharpeRatio identiAes ef/cient estimator taking the problem instance into account.
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(i.e., performance of the behavior policy)

baseline is highbaseline is low

Conservative does not deploy poor-performing policies. High-stakes potentially improves the baseline.



Experiments with gym

Interestingly, SharpeRatio and existing metrics report very different results.
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SharpeRatio values PDIS for k=2,..,4, 
while values DM for k=6,..,11.

MSE and Regret values MIS, RankCorr evaluates DM highly.
RankCorr also evaluates PDIS higher than MDR.

Note: we use self-normalized variants of OPE estimators.



Experiments with gym (analysis)

SharpeRatio automatically considers the risk of deploying poor policies!
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• MSE and Regret chooses MIS, which deploys a detrimental policy with small values of 𝑘. 
• RankCorr chooses a relatively safe one (DM), but evaluates riskier PDIS higher than MDR for 𝑘 ≥ 5.
• SharpeRatio detects unsafe behaviors by discounting the return by the risk (std). 



Summary

• OPE is often used for screening top-𝒌 policies deployed in online A/B tests.

• The proposed SharpeRatio metric measures the ef`ciency of OPE estimator 
wrt the risk-return tradeoff.

• In particular, SharpeRatio can identify a safe OPE estimator over a risky counterpart, 
while also telling an ef`cient OPE estimator taking the problem instance into 
account.

SharpeRatio is an informative assessment metric to compare OPE estimators.
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SharpeRatio is available at the SCOPE-RL package!

SharpeRatio is implemented SCOPE-RL and can be used with a few lines of code.
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Install now!!

GitHub documentation



Thank you for listening!

contact: hk844@cornell.edu
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1. “Towards Assessing and Benchmarking the Risk-Return
Tradeoff of Off-Policy Evaluation.” arXiv preprint, 2023. 
https://arxiv.org/abs/2311.18207

2. “SCOPE-RL: A Python Library for Offline Reinforcement 
Learning and Off-Policy Evaluation.” arXiv preprint, 2023. 
https://arxiv.org/abs/2311.18206
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Appendix
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Connection to the Sharpe ratio [Sharpe,98]  in finance

In finance, an investment is preferable if it is low-risk and high-return.
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asset price

time time

purchase period end period endpurchase

return
return

return is not very high, but can be gained steady return is high, but the investment is high-stakes

asset price



Connection to the Sharpe ratio [Sharpe,98]  in finance

In finance, an investment is preferable if it is low-risk and high-return.

Sharpe ratio = (increase of asset price) / (deviation of asset price during the period)

                     = ( end price – purchase price ) / (std. of asset price)

To improve Sharpe ratio, we often invest on multiple assets and form a portfolio.
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Connection to the Sharpe ratio [Sharpe,98]  in Vnance

In finance, an investment is preferable if it is low-risk and high-return.

Sharpe ratio = (increase of asset price) / (deviation of asset price during the period)

                     = ( end price – purchase price ) / (std. of asset price)

To improve Sharpe ratio, we often invest on multiple assets and form a portfolio.

We see the top-𝑘 policies selected by an OPE estimator as its policy portfolio.

May 2024 Towards assessing risk-return tradeoff of OPE 51

applying the idea



Connection to the Sharpe ratio [Sharpe,98]  in finance

In finance, an investment is preferable if it is low-risk and high-return.

Sharpe ratio = (increase of asset price) / (deviation of asset price during the period)

                     = ( end price – purchase price ) / (std. of asset price)

SharpeRatio = (increase of policy value (pv) by A/B test) / (deviation during A/B test)

= ( pv of the policy chosen by A/B test – pv of behavior policy) / (std. of pv of top-𝑘)

We see the top-𝑘 policies selected by an OPE estimator as its policy portfolio.
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Comparison of SharpeRatio and existing metrics
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SharpeRatio does not always align with the existing metrics.

(because SharpeRatio is the only metric taking the risk into account)



Definitions of the (normalized) baseline metrics

For MSE and Regret, we report the following normalized values.
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Experimental setting

• We use MountainCar from Gym-ClassicControl [Brockman+,16].

• Behavior policy is a softmax policy based on Q-function learned by DDQN [Hasselt+,16].

• Candidate policies are 𝜀-greedy policies with various values of 𝜀 and base models trained by 
CQL [Kumar+,20] and BCQ [Fujimoto+,19].

• For OPE, we use FQE [Le+,19] to train '𝑄 and BestDICE [Yang+,20] to train )𝜌. 

• We also use self-normalized estimators [Kallus&Uehara,19] to alleviate the variance issue.

• We use the implementation of DDQN, CQL, BCQ, and FQE provided in d3rlpy [Seno&Imai,22].
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See our paper for the details.



High-level understanding of importance sampling
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The target policy chooses action A more, but the dataset contains action B more.

evaluation

logging action A action B

more

less

less

more



High-level understanding of importance sampling
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importance weight 
virtually increases action A

The target policy chooses action A more, but the dataset contains action B more.

evaluation

logging action A action B

more

less

less

more



High-level understanding of importance sampling

May 2024 Towards assessing risk-return tradeoff of OPE 58

but can have a high variance
when importance weight is large

The target policy chooses action A more, but the dataset contains action B more.

evaluation

logging ranking A

more

less



Doubly Robust (DR) [Jiang&Li,16] [Thomas&Brunskill,16]

DR is a hydrid of DM and IPS, which apply importance sampling only on the residual.
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(recursive form)

importance weight is multiplied 
on the residual

value after timestep 𝒕



Doubly Robust (DR) [Jiang&Li,16] [Thomas&Brunskill,16]

DR is a hydrid of DM and IPS, which apply importance sampling only on the residual.

Pros:   unbiased and often reduce variance compared to PDIS.

Cons:  can still suffer from high variance when 𝑡 is large.
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State-action Marginal DR (SAM-DR) [Uehara+,20]

SAM-DR is a DR variant that leverages the (state-action) marginal distribution.

Pros:   unbiased when $𝜌 or !𝑄 is accurate and reduces variance compared to DR.

Cons:  accurate estimation of $𝜌 is often challenging, resulting in some bias.
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marginal importance weight is multiplied on the residual



Self-normalized estimators [Kallus&Uehara,19]

Self-normalized estimators alleviate variance by modifying the importance weight.

Self-normalized estimators are no longer unbiased, but remains consistent.
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Self-normalized estimators [Kallus&Uehara,19]

Self-normalized estimators alleviate variance by modifying the importance weight.
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