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Which Variant Is Better?
• Suppose the following results in an A/B test

Average of User CTR
Variant A 0.60

Variant B 0.55
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• We often want to avoid the churn of less-satisfied users
‒ Monetization relies on user retention/growth
‒ Subscription-based services: e.g., video/music streaming platforms

• Maximizing user-average performance (e.g., Mean nDCG) is not safe

User-Oriented Safety
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Standard ERM
min

𝜃
𝔼𝑝 𝑥,𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦

𝑥: Input
𝑦: Label
𝜃: Model parameter
𝑓𝜃: Prediction function
ℓ: loss function

Empirical Risk Minimization

Minimize the average

𝔼𝑝 𝑥,𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦

𝑝 𝑥, 𝑦

Loss ℓ 𝑓𝜃 𝑥 , 𝑦

Distribution of loss



• The average loss of 100𝛼% worse-off samples
𝔼𝑝 𝑥,𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦 ≥ ℓ𝛼

ℓ𝛼: 1 − 𝛼-quantile (Value-at-Risk; VaR)

Value-at-Risk (VaR) ℓ𝛼

𝑝 𝑥, 𝑦

Conditional Value-at-Risk (CVaR)

Conditional Value-at-Risk (CVaR)
𝔼𝑝 𝑥,𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦 ≥ ℓ𝛼

𝛼

Ignore points
with sufficiently small losses

Distribution of loss

Loss ℓ 𝑓𝜃 𝑥 , 𝑦



CVaR Minimization
CVaR

𝔼𝑝 𝑥,𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦 ℓ 𝑓𝜃 𝑥 , 𝑦 ≥ ℓ𝛼

Dual of CVaR

min
ℓ𝛼

ℓ𝛼 +
1

𝛼
𝔼𝑝 𝑥,𝑦 max 0, ℓ 𝑓𝜃 𝑥 , 𝑦 − ℓ𝛼

• Minimizing its empirical approx. using i.i.d. samples 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

min
𝜃

min
ℓ𝛼

ℓ𝛼 +
1

𝛼𝑛
෍

𝑖=1

𝑛

max 0, ℓ 𝑓𝜃 𝑥𝑖 , 𝑦𝑖 − ℓ𝛼



Inefficiency issue in CVaR+RecSys
Matrix factorization + CVaR dual 

min
𝐔,𝐕

min
𝜉

𝜉 +
1

𝛼 𝒰
෍

𝑖=1

𝒰

max 0, ℓ 𝐕𝐮𝑖, 𝒱𝑖 − 𝜉 + Ω 𝐔, 𝐕

where 𝒱𝑖 is the set of 𝑖’s clicked items
Quadratic loss function

ℓ 𝐕𝐮𝑖 , 𝒱𝑖 =
1

𝒱𝑖
෍
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2
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Remark

Non-linear max 0,⋅  breaks separability w.r.t. the rows of 𝐕 and smoothness
→ the objective is not scalable for many items and difficult to exploit second-order information
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Separable upper bound
of ranking loss
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Non-separable w.r.t. items!

max 0, 𝑓 𝐕 ≠ ෍

𝑗=1

𝒱

𝑔𝑗 𝐯𝑗



Convolution-type Smoothing
Convolution-type smoothing
Consider the convolution between 𝜌1 𝑢 = max 0, 𝑢  and some proper kernel 𝑘ℎ ⋅ , 

𝜌1 ∗ 𝑘ℎ 𝑢 = න
−∞

∞

𝜌1 𝑣 𝑘ℎ 𝑣 − 𝑢 𝑑𝑣

= න
0

∞

𝑣 ⋅ 𝑘ℎ 𝑣 − 𝑢 𝑑𝑣

= න
0

∞

1 − 𝐾ℎ 𝑣 − 𝑢 𝑑𝑣 ,

where 𝐾ℎ 𝑢 = ∞−׬

𝑢
𝑘ℎ 𝑣 𝑑𝑣 is the kernel CDF

Remark
The first/second derivatives of 𝜌1 ∗ 𝑘ℎ  have tractable forms:

∇𝑢 𝜌1 ∗ 𝑘ℎ 𝑢 = 1 − 𝐾ℎ −𝑢

∇𝑢
2 𝜌1 ∗ 𝑘ℎ 𝑢 = 𝑘ℎ −𝑢



SAFER2

SAFER2 (Smoothing Approach for Efficient Risk-averse Recommendation)

min
𝐔,𝐕,𝜉

𝜉 +
1

𝛼 𝒰
෍

𝑖=1

𝒰

𝜌1 ∗ 𝑘ℎ ℓ 𝐕𝐮𝑖 , 𝒱𝑖 − 𝜉 + Ω 𝐔, 𝐕

Efficient block-coordinate algorithm

𝜉 𝑘+1 = argmin
𝜉

𝜉 +
1

𝛼 𝒰
෍

𝑖=1

𝒰

𝜌1 ∗ 𝑘ℎ ℓ 𝐕 𝑘 𝐮𝑖
𝑘 , 𝒱𝑖 − 𝜉

𝐔 𝑘+1 , 𝐕 𝑘+1 = argmin
𝐔,𝐕

1

𝛼 𝒰
෍

𝑖=1

𝒰

𝜌1 ∗ 𝑘ℎ ℓ 𝐕𝐮𝑖 , 𝒱𝑖 − 𝜉 𝑘+1 + Ω 𝐔, 𝐕

 = argmin
𝐔,𝐕

max
𝐳

1

𝛼 𝒰
෍

𝑖=1

𝒰

𝑧𝑖 ⋅ ℓ 𝐕𝐮𝑖 , 𝒱𝑖 − 𝜉 𝑘+1 − 𝜌1 ∗ 𝑘ℎ
∗ 𝑧𝑖 + Ω 𝐔, 𝐕

Alternating
optimization 

Separable reformulation 

smoothed max 0,⋅   



Numerical Results
Safety

‒ SAFER2 shows stable performance for the tail users (small 𝛼)
Quality

‒ SAFER2 preserves competitive average performance (𝛼 = 1.0)

 



Convergence Speed
SAFER2 (- - -) achieves competitive training speed 
compared to the fastest method (iALS).



Summary

• We proposed safety-aware recommendation via CVaR minimization beyond ERM

• We develop a safe and scalable method, 𝐒𝐀𝐅𝐄𝐑𝟐, which
‒ overcomes the non-parallelizable property of CVaR formulation
‒ enables an ALS-type optimization with fast training convergence 

• Further technical details can be found in the paper
‒ Discussions on CVaR + convolution-type smoothing
‒ Customized Tikhonov regularization for SAFER2

‒ Various extensions of SAFER2

• Stochastic quantile/VaR estimation based on sub-sampled users
• Subspace-based BCD for large embedding sizes
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