Safe Collaborative Filtering

Riku Togashi*, Tatsushi Oka†, Naoto Ohsaka*, Tetsuro Morimura*

*CyberAgent †Department of Economics, Keio University

Which Variant Is Better?

Suppose the following results in an A/B test

	Average of User CTR
Variant A	0.60
Variant B	0.55

User-Oriented Safety

- We often want to avoid the churn of less-satisfied users
 - Monetization relies on user retention/growth
 - Subscription-based services: e.g., video/music streaming platforms
- Maximizing user-average performance (e.g., Mean nDCG) is not safe

Empirical Risk Minimization

Standard ERM

 $\min_{\theta} \mathbb{E}_{p(x,y)}[\ell(f_{\theta}(x),y)]$

x: Input

y: Label

 θ : Model parameter

 f_{θ} : Prediction function

ℓ: loss function

Conditional Value-at-Risk (CVaR)

• The average loss of $100\alpha\%$ worse-off samples

$$\mathbb{E}_{p(x,y)}[\ell(f_{\theta}(x),y) \mid \ell(f_{\theta}(x),y) \ge \ell_{\alpha}]$$

 ℓ_{α} : 1 – α -quantile (Value-at-Risk; VaR)

CVaR Minimization

CVaR

$$\mathbb{E}_{p(x,y)}[\ell(f_{\theta}(x),y) \mid \ell(f_{\theta}(x),y) \ge \ell_{\alpha}]$$

Dual of CVaR

$$\min_{\ell_{\alpha}} \left\{ \ell_{\alpha} + \frac{1}{\alpha} \mathbb{E}_{p(x,y)} [\max(0, \ell(f_{\theta}(x), y) - \ell_{\alpha})] \right\}$$

• Minimizing its empirical approx. using i.i.d. samples $(x_1, y_1), ..., (x_n, y_n)$

$$\min_{\theta} \min_{\ell_{\alpha}} \left\{ \ell_{\alpha} + \frac{1}{\alpha n} \sum_{i=1}^{n} \max(0, \ell(f_{\theta}(x_i), y_i) - \ell_{\alpha}) \right\}$$

Matrix factorization + CVaR dual

$$\min_{\mathbf{U}, \mathbf{V}} \min_{\xi} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \max(0, \ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) - \xi) + \Omega(\mathbf{U}, \mathbf{V}) \right\}$$

where V_i is the set of i's clicked items

Quadratic loss function

$$\ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) = \frac{1}{|\mathcal{V}_i|} \sum_{j \in \mathcal{V}_i} \frac{1}{2} (\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_j - 1)^2 + \frac{\beta}{2} \|\mathbf{V}\mathbf{u}_i\|_2^2$$

L2 regularization (with Tikhonov weight matrices)

$$\Omega(\mathbf{U}, \mathbf{V}) = \frac{1}{2} \left\| \mathbf{\Lambda}_U^{1/2} \mathbf{U} \right\|_F^2 + \frac{1}{2} \left\| \mathbf{\Lambda}_V^{1/2} \mathbf{V} \right\|_F^2$$

Remark

Non-linear $max(0,\cdot)$ breaks separability w.r.t. the rows of **V** and smoothness

ightarrow the objective is **not scalable for many items** and **difficult to exploit second-order information**

Matrix factorization + CVaR dual

$$\min_{\mathbf{U}, \mathbf{V}} \min_{\xi} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \max(0, \ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) - \xi) + \Omega(\mathbf{U}, \mathbf{V}) \right\}$$

where V_i is the set of i's clicked items

Quadratic loss function

$$\ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) = \frac{1}{|\mathcal{V}_i|} \sum_{j \in \mathcal{V}_i} \frac{1}{2} (\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_j - 1)^2 + \frac{\beta}{2} \|\mathbf{V}\mathbf{u}_i\|_2^2$$

L2 regularization (with Tikhonov weight matrices)

$$\Omega(\mathbf{U}, \mathbf{V}) = \frac{1}{2} \left\| \mathbf{\Lambda}_{U}^{1/2} \mathbf{U} \right\|_{F}^{2} + \frac{1}{2} \left\| \mathbf{\Lambda}_{V}^{1/2} \mathbf{V} \right\|_{F}^{2}$$

Separable upper bound of ranking loss

Remark

Non-linear $max(0,\cdot)$ breaks separability w.r.t. the rows of **V** and smoothness \rightarrow the objective is **not scalable for many items** and **difficult to exploit second-order information**

Matrix factorization + CVaR dual

$$\min_{\mathbf{U}, \mathbf{V}} \min_{\xi} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \max(0, \ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) - \xi) + \Omega(\mathbf{U}, \mathbf{V}) \right\}$$

where V_i is the set of i's clicked

Quadratic loss function

L2 regularization

Remark

Non-linear max(0,

 \rightarrow the objective is **no**

Matrix factorization + CVaR dual

$$\min_{\mathbf{U}, \mathbf{V}} \min_{\xi} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \max(0, \ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) - \xi) + \Omega(\mathbf{U}, \mathbf{V}) \right\}$$

where V_i is the set of i's clicked items

Quadratic loss function

Non-linear max(0,

 \rightarrow the objective is **no**

 $|\mathcal{V}|$

Matrix factorization + CVaR dual

$$\min_{\mathbf{U}, \mathbf{V}} \min_{\xi} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \max(0, \ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) - \xi) + \Omega(\mathbf{U}, \mathbf{V}) \right\}$$

where V_i is the set of i's clicked items

Quadratic loss function

Non-separable w.r.t. items!

L2 regularization (w

$$\max(0, f(\mathbf{V})) \neq \sum_{j=1}^{|\mathcal{V}|} g_j(\mathbf{v}_j)$$

Remark

Non-linear $max(0,\cdot)$ breaks separability w.r.t. the rows of **V** and smoothness

→ the objective is **not scalable for many items** and **difficult to exploit second-order information**

Convolution-type Smoothing

Convolution-type smoothing

Consider the convolution between $\rho_1(u) = \max(0, u)$ and some proper kernel $k_h(\cdot)$,

$$(\rho_1 * k_h)(u) = \int_{-\infty}^{\infty} \rho_1(v) k_h(v - u) dv$$
$$= \int_{0}^{\infty} v \cdot k_h(v - u) dv$$
$$= \int_{0}^{\infty} \{1 - K_h(v - u)\} dv,$$

where $K_h(u) = \int_{-\infty}^{u} k_h(v) dv$ is the kernel CDF

Remark

The first/second derivatives of $(\rho_1 * \overline{k_h})$ have tractable forms:

$$\nabla_u(\rho_1 * k_h)(u) = 1 - K_h(-u)$$

$$\nabla_u^2(\rho_1 * k_h)(u) = k_h(-u)$$

SAFER₂

SAFER₂ (Smoothing Approach for Efficient Risk-averse Recommendation)

$$\min_{\mathbf{U}, \mathbf{V}, \xi} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} (\rho_1 * k_h) (\ell(\mathbf{V}\mathbf{u}_i, \mathcal{V}_i) - \xi) + \Omega(\mathbf{U}, \mathbf{V}) \right\}$$
smoothed max(0,·)

Efficient block-coordinate algorithm

Alternating optimization
$$\begin{cases} \xi^{(k+1)} = \underset{\xi}{\operatorname{argmin}} \left\{ \xi + \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} (\rho_1 * k_h) \left(\ell \left(\mathbf{V}^{(k)} \mathbf{u}_i^{(k)}, \mathcal{V}_i \right) - \xi \right) \right\} \\ \left(\mathbf{U}^{(k+1)}, \mathbf{V}^{(k+1)} \right) = \underset{\mathbf{U}, \mathbf{V}}{\operatorname{argmin}} \left\{ \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} (\rho_1 * k_h) \left(\ell \left(\mathbf{V} \mathbf{u}_i, \mathcal{V}_i \right) - \xi^{(k+1)} \right) + \Omega(\mathbf{U}, \mathbf{V}) \right\} \\ = \underset{\mathbf{U}, \mathbf{V}}{\operatorname{argmin}} \max_{\mathbf{Z}} \left\{ \frac{1}{\alpha |\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \left[z_i \cdot \left(\ell \left(\mathbf{V} \mathbf{u}_i, \mathcal{V}_i \right) - \xi^{(k+1)} \right) - (\rho_1 * k_h)^*(z_i) \right] + \Omega(\mathbf{U}, \mathbf{V}) \right\} \\ \text{Separable reformulation} \end{cases}$$

Numerical Results

Safety

– SAFER $_2$ shows stable performance for the tail users (small lpha)

Quality

- SAFER₂ preserves competitive average performance $(\alpha = 1.0)$

Convergence Speed

SAFER₂ (---) achieves competitive training speed compared to the fastest method (iALS).

Summary

- We proposed safety-aware recommendation via CVaR minimization beyond ERM
- We develop a safe and scalable method, SAFER₂, which
 - overcomes the non-parallelizable property of CVaR formulation
 - enables an ALS-type optimization with fast training convergence
- Further technical details can be found in the paper
 - Discussions on CVaR + convolution-type smoothing
 - Customized Tikhonov regularization for SAFER₂
 - Various extensions of SAFER₂
 - Stochastic quantile/VaR estimation based on sub-sampled users
 - Subspace-based BCD for large embedding sizes