
Revisiting the Last-Iterate Convergence of Stochastic Gradient Methods
Zijian Liu Zhengyuan Zhou

Stern School of Business, New York University

Basic Setup

min
x∈X

F(x) = f (x) + h(x) (OPT)

• f : X → R and h : X → R are both convex.
•X ⊆ Rd is nonempty closed convex.
•Given x ∈ X , we can only access a stochastic gradient ĝ such

that E [ĝ | x] ∈ ∂ f (x).

Proximal Stochastic Gradient Descent

Algorithm 1 Proximal Stochastic Gradient Descent
1: Input: initial point x1 ∈ X , step size ηt.
2: for t = 1 to T:
3: xt+1 = argminx∈Xh(x) + ∥x − (xt − ηtĝt)∥2

2/(2ηt)

The proximal version of stochastic gradient descent (SGD) is a
popular method to solve (OPT).

•The convergence of the average iterate xT+1
avg = ∑T

t=1 xt+1/T has
been well-studied in different settings (e.g., Lipschitz/smooth
f ), see, for example, [1].

•However, in practice, people always use the last iterate as the
output. Naturally, we want to know whether F(xT+1)− F(x∗)
converges? If it converges, how fast is it?

Related Work

All the previous works for the last iterate only consider h = 0.

• f is Lipschitz under the 2-norm: [2-3] proved the

high-probability rate O
(√

log 1
δ/T

)
on bounded domains. [4]

showed the O(1/
√

T) expected rate for general domains.
• f is smooth under the 2-norm: The only result is [5], who

established the O(1/T1/3) rate in expectation.

Three Questions

There are three questions we want to ask:

•Q1:Is it possible to prove the high-probability last-iterate convergence
for Lipschitz convex functions without assuming compact domains?

•Q2:Does the last iterate of SGD provably converge in the rate of
O(1/

√
T) for smooth and convex functions on a general domain?

•Q3:Is there a unified way to analyze the last-iterate convergence of
stochastic gradient methods both in expectation and in high
probability to accommodate general domains, composite objectives,
non-Euclidean norms, Lipschitz conditions, smoothness, and (strong)
convexity at once?

In our work, we answer these three questions affirmatively.

Composite Stochastic Mirror Descent

Algorithm 2 Composite Stochastic Mirror Descent
1: Input: initial point x1 ∈ X , step size ηt.
2: for t = 1 to T:
3: xt+1 = argminx∈Xh(x) + ⟨ĝt, x − xt⟩+ Dψ(x, xt)/ηt

To accommodate a general norm ∥ · ∥, we consider the Composite
Stochastic Mirror Descent (CSMD) algorithm, where Dψ(x, y) =
ψ(x) − ψ(y) − ⟨∇ψ(y), x − y⟩ and ψ is 1-strongly convex with
respect to the norm ∥ · ∥ (i.e., Dψ(x, y) ≥ ∥x − y∥2/2).
Remark: When ∥ · ∥ = ∥ · ∥2, taking ψ(x) = ∥x∥2/2 to recover
Proximal SGD.

The Central Assumption

(L, M)-smoothness assumption: f (x) − f (y) − ⟨g, x − y⟩ ≤
L∥x−y∥2

2 + M∥x − y∥2, ∀x, y ∈ X , g ∈ ∂ f (y).
Remark: This function class contains all Lipschitz and smooth
functions. It also includes Hölder smooth functions.
Remark: We do not require any compactness on X .

New Last-iterate Results

High-Probability Convergence: Under sub-Gaussian noises (i.e.,
E
[
exp

(
∥ĝ − E [ĝ | x] ∥2

∗/σ2) | x
]

≤ e), for any δ ∈ (0, 1), for properly
picked ηt, with probability at least 1 − δ, CSMD guarantees

F(xT+1)− F(x∗) ≤ Õ

LDψ(x1, x∗)
T

+

(
M + σ

√
log 1

δ

)√
Dψ(x1, x∗)

√
T

 .

In-Expectation Convergence: Under the finite variance assumption (i.e.,
E
[
∥ĝ − E[ĝ | x]∥2

∗ | x
]
≤ σ2), for properly picked ηt, CSMD guarantees

E[F(xT+1)− F(x∗)] ≤ Õ

LDψ(x1, x∗)
T

+
(M + σ)

√
Dψ(x1, x∗)

√
T

 .

For the strongly convex case, we refer the interested reader to our paper.

Proof Strategies and Extensions

• In the proof, we use a new auxiliary sequence zt. Instead of bounding
F(xt+1)− F(x∗) in every step, we control F(xt+1)− F(zt) to finally obtain
the rate for the last iterate.

•Our proof is unified and works for various assumptions at once.
•The proof technique provably extends to heavy-tailed noises, sub-Weibull

noises, etc. We refer the interested reader to our paper for details.
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