Revisiting the Last-lterate Convergence of Stochastic Gradient Methods

Basic Setup

I;’éi? F(x) = f(x) + h(x) (OPT)

of : X - Randh: X — R are both convex.
» X C R?is nonempty closed convex.
e Given x € X, we can only access a stochastic gradient g such

that E |9 | x| € 9f (x).

Proximal Stochastic Gradient Descent

Algorithm 1 Proximal Stochastic Gradient Descent

1. Input: initial point x! € X, step size 1t
2. fort =1 to T=
s T =argmin, yh(x) + [|lx — (x' — 18" |13/ (2171)

The proximal version of stochastic gradient descent (SGD) is a
popular method to solve (OPT).

» The convergence of the average iterate xaTV? =Y, x!"1/T has
been well-studied in different settings (e.g., Lipschitz/smooth
f), see, for example, [1].

» However, in practice, people always use the last iterate as the
output. Naturally, we want to know whether F(x' ™) — F(x*)
converges? If it converges, how fast is it?

Related Work

All the previous works for the last iterate only consider & = 0.

e f is Lipschitz under the 2-norm: [2-3] proved the
high-probability rate O <\/ log% / T) on bounded domains. [4]

showed the O(1/+/T) expected rate for general domains.

e f is smooth under the 2-norm: The only result is [5], who
established the O(1/T'/3) rate in expectation.
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Three Questions

There are three questions we want to ask:

» Q1:Is it possible to prove the high-probability last-iterate convergence
for Lipschitz convex functions without assuming compact domains?

® Q2:Does the last iterate of SGD provably converge in the rate of
O(1/+/T) for smooth and convex functions on a general domain?

® Q3:Is there a unified way to analyze the last-iterate convergence of
stochastic gradient methods both in expectation and in high
probability to accommodate general domains, composite objectives,
non-Euclidean norms, Lipschitz conditions, smoothness, and (strong)
convexity at once?

In our work, we answer these three questions affirmatively.

Composite Stochastic Mirror Descent

Algorithm 2 Composite Stochastic Mirror Descent
1. Input: initial point x! € X, step size Nt
2. fort =1 to T:
. x*t!l =argmin__h(x) + (g

, x —x') + Dy(x,x") /s

To accommodate a general norm || - ||, we consider the Composite
Stochastic Mirror Descent (CSMD) algorithm, where Dy(x,y) =
v(x) —¢P(y) — (V(y),x —y) and ¢ is 1-strongly convex with
respect to the norm || - || (i.e., Dy(x,y) > ||x — y||*/2).

Remark: When || - || = || - ||o, taking ¥(x) = ||x]|*/2 to recover
Proximal SGD.

The Central Assumption

(L, M)-smoothness assumption: f(x) — f(y) — (g,x —y) <
Il x— 2

P Mx - g2, vy € X,g € f (y).
Remark: This function class contains all Lipschitz and smooth

functions. It also includes Holder smooth functions.
Remark: We do not require any compactness on X.

New Last-iterate Results

High-Probability Convergence: Under sub-Gaussian noises (i.e.,
E[exp (|I§—E[g]| x]||2/c?) | x] < e), for any § € (0,1), for properly

picked #;, with probability at least 1 — 0, CSMD guarantees

* M+ co4/lo 1 D xl,x*
F(XT+1)—F(x*)§@ LD¢(;1,X) I ( + \/ g\j;\/ o )

In-Expectation Convergence: Under the finite variance assumption (i.e.,
E [||g—E[Z | x]||? | x| < o?), for properly picked 7;, CSMD guarantees

* O xl,x*
E[F(x'*") = F(x*)] < O LDy(x', ") | (M+ )\ﬁw( )

T
For the strongly convex case, we refer the interested reader to our paper.

Proof Strategies and Extensions

e In the proof, we use a new auxiliary sequence z;. Instead of bounding
F(x!™1) — F(x*) in every step, we control F(x!*!) — F(z!) to finally obtain
the rate for the last iterate.

e Our prootf is unified and works for various assumptions at once.

® The proof technique provably extends to heavy-tailed noises, sub-Weibull
noises, etc. We refer the interested reader to our paper for details.
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