



## Threaten Spiking Neural Networks through Combining Rate and Temporal Information

Zecheng Hao, Tong Bu, Xinyu Shi, Zihan Huang, Zhaofei Yu, Tiejun Huang Peking University



### Rethinking Rate Information Gradient in SNNs

- **Rate information** in SNNs mainly refers to an approximate linear transformation relationship, similar to ANNs, between the average firing rate of adjacent layers.
- The same average input current corresponds to multiple different average firing rates
- Consider adversarial attacks similar to ANN gradient calculation mode





2024/4/20

2

#### Impact factors about the retention degree of temporal information in SNNs

$$\chi^{l} = \int_{-\infty}^{+\infty} \operatorname{Var}\left(\left.\frac{\boldsymbol{r}^{l}(T)}{\boldsymbol{W}^{l}\boldsymbol{r}^{l-1}(T)}\right| \boldsymbol{W}^{l}\boldsymbol{r}^{l-1}(T) = x\right) \mathbf{P}\left(\boldsymbol{W}^{l}\boldsymbol{r}^{l-1}(T) = x\right) \mathrm{d}x.$$

Measure the difference degree in spike firing sequences under the same average input current

**Theorem 1.** If  $W^l r^{l-1}(T) \sim U(-c,c)$ , for the soft-reset mechanism, we have  $\chi^l = \int_{-c}^{c} \frac{[(T-1)(1-\lambda^l)^2+1]h^2(x,\lambda^l)}{6cT^2x^2} dx$ . Moreover, assuming  $h(x,\lambda^l) = ax + b$ , we will further have  $\chi^l = \frac{a^2c^2-b^2}{3c^2} \frac{(T-1)(1-\lambda^l)^2+1}{T^2}$ . 1. Leakage degree of membrane potential 2. Time-steps 3. Input data types: static, neuromorphic

Table 1: Attack success rate of CBA and Ours under white-box attack.

| Datasets    | Time-steps | FGSM, $\lambda$ =0.5 | FGSM, $\lambda$ =1.0 | PGD, $\lambda$ =0.5 | PGD, $\lambda$ =1.0 |
|-------------|------------|----------------------|----------------------|---------------------|---------------------|
| CIFAR-10    | 4          | 59.95/ <b>86.42</b>  | 64.95/ <b>90.28</b>  | 41.51/ <b>99.08</b> | 52.65/ <b>98.89</b> |
|             | 8          | 60.40/ <b>88.34</b>  | 71.76/ <b>92.56</b>  | 42.13/ <b>99.47</b> | 67.94/ <b>99.90</b> |
| CIFAR10-DVS | 5          | 42.44/ <b>49.92</b>  | 37.39/ <b>55.80</b>  | 44.58/ <b>55.57</b> | 42.46/ <b>62.90</b> |
|             | 10         | 36.05/ <b>51.18</b>  | 45.39/ <b>74.47</b>  | 38.95/ <b>58.03</b> | 54.74/ <b>89.61</b> |



3

#### Hybrid adversarial attack based on both rate and temporal information



Figure 2: Overall algorithm framework for HART. (a): the property of pre-calculation, (b): back-propagation design, (c): adjustable temporal attribute.

$$\nabla_{\mathbf{W}^{l}} \mathcal{L} = \sum_{t=1}^{T} \left[ \frac{\partial \mathcal{L}}{\partial \mathbf{m}^{l}} \right] \frac{\partial \mathbf{m}^{l}(t)}{\partial \mathbf{W}^{l}}, \frac{\partial \mathcal{L}}{\partial \mathbf{s}^{l-1}(t)} = \left[ \frac{\partial \mathcal{L}}{\partial \mathbf{m}^{l}} \right] \frac{\partial \mathbf{m}^{l}(t)}{\partial \mathbf{s}^{l-1}(t)}.$$
$$\left[ \frac{\partial \mathcal{L}}{\partial \mathbf{m}^{l}} \right] = \frac{1}{T} \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial \mathbf{s}^{l}(t)} \frac{\partial \mathbf{s}^{l}(t)}{\partial \mathbf{m}^{l}(t)}.$$

**Rate attribute**: By pruning and merging gradients, we have:  $\mathbb{E} \left( \nabla_{\mathbf{W}^{l}} \mathcal{L} \right) = \left( \nabla_{\mathbf{W}^{l}} \mathcal{L} \right)_{rate} and \mathbb{E} \left( \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial s^{l-1}(t)} \right) = \left( \frac{\partial \mathcal{L}}{\partial r^{l-1}(T)} \right)_{rate}$  **Pre-calculation property**: calculate  $\sum_{t=1}^{T} \frac{\partial s_{t}^{l}}{\partial m_{t}^{l}}$  in advance to reduce the overhead of back-propagation from O(T) to O(1)



#### 2024/4/20 4

#### Hybrid adversarial attack based on both rate and temporal information



Figure 2: Overall algorithm framework for HART. (a): the property of pre-calculation, (b): back-propagation design, (c): adjustable temporal attribute.



Figure 3: The performance of HART under different  $\gamma$  on CIFAR-10.

**Temporal attribute**: dynamically regulate the surrogate gradient curve through  $\gamma$ Empirical principles for selecting  $\gamma$ : 1. a smaller  $\gamma$  corresponds to a gradient with more temporal attributes 2. ASR- $\gamma$  curve approximately follows an unimodal distribution

2024/4/20

5



#### Experiments: white-box attack

Table 2: Comparison between HART and previous works under white-box attack (WBA). \* denotes robust target models.

| Dataset     | Architecture | $\lambda$ | Clean Acc. | Attack | CBA   | BPTR  | STBP  | RGA    | Ours         |
|-------------|--------------|-----------|------------|--------|-------|-------|-------|--------|--------------|
|             |              | 0.5       | 91.48      | FGSM   | 60.40 | 82.67 | 91.71 | 93.63  | 96.28        |
|             |              |           |            | PGD    | 42.13 | 99.21 | 99.95 | 99.92  | 100.00       |
|             | VGG-11       | 0.9       | 93.03      | FGSM   | 70.58 | 88.36 | 89.91 | 94.41  | 97.24        |
|             |              |           |            | PGD    | 55.29 | 99.45 | 99.94 | 99.97  | <b>99.98</b> |
| CIEAD 10    |              | 0.0*      | 80.00      | FGSM   | 25.49 | 41.77 | 55.41 | 56.76  | 58.70        |
| CIFAK-10    |              | 0.9       | 69.99      | PGD    | 20.77 | 61.45 | 78.55 | 74.42  | 83.54        |
|             |              | 1.0       | 93.06      | FGSM   | 71.76 | 88.76 | 86.28 | 93.74  | 96.22        |
|             |              |           |            | PGD    | 67.94 | 99.63 | 99.70 | 99.94  | <b>99.97</b> |
|             | ResNet-17    | 0.9       | 93.04      | FGSM   | 44.29 | 85.06 | 84.24 | 92.93  | 94.80        |
|             |              |           |            | PGD    | 29.76 | 99.86 | 99.91 | 100.00 | 100.00       |
| CIFAR-100   | VGG-11       | 0.9       | 73.28      | FGSM   | 83.73 | 92.47 | 92.88 | 94.72  | 96.06        |
|             |              |           |            | PGD    | 82.91 | 99.59 | 99.86 | 99.92  | <b>99.96</b> |
|             |              | 0.9*      | 67.21      | FGSM   | 32.69 | 57.19 | 70.42 | 70.24  | 72.41        |
|             |              |           |            | PGD    | 27.57 | 71.98 | 86.56 | 83.35  | 87.68        |
|             | ResNet-17    | 0.9       | 72.05      | FGSM   | 65.34 | 86.94 | 85.66 | 92.06  | 94.54        |
|             |              |           |            | PGD    | 45.17 | 99.65 | 99.69 | 99.90  | <b>99.96</b> |
| CIFAR10-DVS | VGG-DVS      | 0.5       | 76.0       | FGSM   | 36.05 | 50.39 | 59.08 | 53.95  | 61.05        |
|             |              |           |            | PGD    | 38.95 | 60.00 | 71.05 | 62.11  | 74.08        |
|             |              | 1.0       | 76.0       | FGSM   | 45.39 | 69.74 | 76.97 | 76.05  | 78.42        |
|             |              |           |            | PGD    | 54.74 | 87.11 | 92.63 | 89.08  | 93.03        |



#### Experiments: black-box attack

Table 3: Comparison between HART and previous works under black-box attack (BBA). \* denotes robust target models.

| Dataset     | Architecture | $\lambda$ | Clean Acc. | Attack | CBA   | BPTR  | STBP  | RGA   | Ours         |
|-------------|--------------|-----------|------------|--------|-------|-------|-------|-------|--------------|
|             |              | 0.5       | 91.48      | FGSM   | 43.04 | 63.44 | 77.77 | 79.65 | 82.68        |
|             |              |           |            | PGD    | 23.50 | 84.21 | 95.99 | 95.36 | 96.74        |
|             | VGG-11       | 0.9       | 93.03      | FGSM   | 43.45 | 66.72 | 73.45 | 77.28 | 85.82        |
|             |              |           |            | PGD    | 23.98 | 84.72 | 95.04 | 94.69 | 97.62        |
| CIEAD 10    |              | 0.0*      | 80.00      | FGSM   | 14.08 | 25.26 | 35.83 | 35.44 | 38.26        |
| CIFAK-10    |              | 0.9       | 69.99      | PGD    | 10.63 | 31.10 | 46.06 | 44.42 | 47.83        |
|             |              | 1.0       | 93.06      | FGSM   | 43.28 | 64.25 | 68.03 | 73.26 | 80.34        |
|             |              |           |            | PGD    | 24.75 | 80.55 | 90.91 | 91.36 | 96.22        |
|             | ResNet-17    | 0.9       | 93.04      | FGSM   | 36.07 | 69.53 | 67.11 | 80.11 | 84.95        |
|             |              |           |            | PGD    | 15.57 | 93.72 | 94.30 | 98.36 | <b>99.28</b> |
| CIFAR-100   | VGG-11       | 0.9       | 73.28      | FGSM   | 68.33 | 80.10 | 80.90 | 84.27 | 88.51        |
|             |              |           |            | PGD    | 42.45 | 88.91 | 93.65 | 93.91 | 97.32        |
|             |              | 0.9*      | 67.21      | FGSM   | 22.59 | 37.58 | 47.20 | 47.94 | <b>50.78</b> |
|             |              |           |            | PGD    | 18.24 | 41.73 | 54.40 | 54.78 | <b>57.66</b> |
|             | DecNet 17    | 0.9       | 72.05      | FGSM   | 61.22 | 75.65 | 74.30 | 81.19 | 85.31        |
|             | Residet-1/   |           | 72.05      | PGD    | 32.59 | 91.07 | 89.13 | 95.66 | <b>98.06</b> |
| CIFAR10-DVS | VGG-DVS      | 0.5       | 76.0       | FGSM   | 34.87 | 44.08 | 47.89 | 48.55 | 49.74        |
|             |              |           |            | PGD    | 35.13 | 47.63 | 50.53 | 50.92 | 53.16        |
|             |              | 1.0       | 76.0       | FGSM   | 43.03 | 62.50 | 66.32 | 65.79 | <b>69.74</b> |
|             |              |           | /0.0       | PGD    | 52.11 | 70.92 | 76.45 | 75.66 | 78.03        |



#### Experiments: time-steps & perturbation degrees

Table 4: Attack success rate for STBP/RGA/HART with different time-steps on CIFAR-10/VGG-11.

| $\lambda$ | Time-steps | FGSM, WBA                 | FGSM, BBA                 | PGD, WBA                   | PGD, BBA                  |
|-----------|------------|---------------------------|---------------------------|----------------------------|---------------------------|
| 0.5       | 4          | 90.07/93.24/ <b>95.68</b> | 76.22/78.52/ <b>80.10</b> | 99.88/99.85/ <b>99.98</b>  | 94.59/94.21/ <b>94.96</b> |
|           | 8          | 91.71/93.63/ <b>96.28</b> | 77.77/79.65/ <b>82.68</b> | 99.92/99.92/ <b>100.00</b> | 95.99/95.36/ <b>96.74</b> |
|           | 16         | 91.86/93.48/ <b>95.82</b> | 77.49/79.66/ <b>83.49</b> | 99.95/99.91/ <b>99.99</b>  | 96.12/95.98/ <b>97.29</b> |
| 1.0       | 4          | 81.89/91.03/ <b>92.67</b> | 65.52/71.24/ <b>76.43</b> | 99.17/99.23/ <b>99.40</b>  | 87.48/89.37/ <b>92.71</b> |
|           | 8          | 86.28/93.74/ <b>96.22</b> | 68.03/73.26/ <b>80.34</b> | 99.70/99.94/ <b>99.97</b>  | 90.91/91.36/ <b>96.22</b> |
|           | 16         | 87.49/95.24/ <b>96.65</b> | 66.89/75.07/ <b>81.41</b> | 99.88/99.97/ <b>99.99</b>  | 90.86/92.67/ <b>97.14</b> |

Table 5: Attack success rate for STBP/RGA/HART with different perturbation degrees on CIFAR-10/VGG-11.

| $\lambda$ | $\epsilon$ | FGSM, WBA                 | FGSM, BBA                 | PGD, WBA                   | PGD, BBA                  |
|-----------|------------|---------------------------|---------------------------|----------------------------|---------------------------|
|           | 2/255      | 49.15/45.76/ <b>55.91</b> | 24.67/22.87/ <b>26.41</b> | 66.32/62.08/ <b>78.33</b>  | 29.30/28.42/ <b>30.50</b> |
| 0.5       | 4/255      | 76.30/76.86/ <b>83.06</b> | 51.28/50.05/ <b>54.31</b> | 96.99/95.14/ <b>98.95</b>  | 69.43/68.12/ <b>71.54</b> |
|           | 8/255      | 91.71/93.63/ <b>96.28</b> | 77.77/79.65/ <b>82.68</b> | 99.92/99.92/ <b>100.00</b> | 95.99/95.36/ <b>96.74</b> |
|           | 2/255      | 46.41/44.46/ <b>46.76</b> | 19.19/19.62/ <b>21.89</b> | <b>65.58</b> /61.44/65.26  | 21.89/21.96/ <b>24.75</b> |
| 1.0       | 4/255      | 71.82/75.17/ <b>78.56</b> | 41.48/42.76/ <b>47.80</b> | 95.28/95.27/ <b>96.39</b>  | 57.29/56.78/ <b>64.08</b> |
|           | 8/255      | 86.28/93.74/ <b>96.22</b> | 68.03/73.26/ <b>80.34</b> | 99.70/99.94/ <b>99.97</b>  | 90.91/91.36/ <b>96.22</b> |



#### Discussion & Conclusion

- We revisit the gradient calculation mode based on average spike firing rate, and quantitatively analyzed the retention degree of temporal information in SNNs.
- We propose a hybrid attack framework based on two types of information and analyze its **rate and temporal attributes**. We point out that the **precalculation property** of this framework and **empirical rules for determining gamma** can further reduce the computational overhead.
- Our method achieves state-of-the-art attack success rate (ASR) across various hyper-parameter settings for both static and neuromorphic datasets.







# Thanks for Listening!

