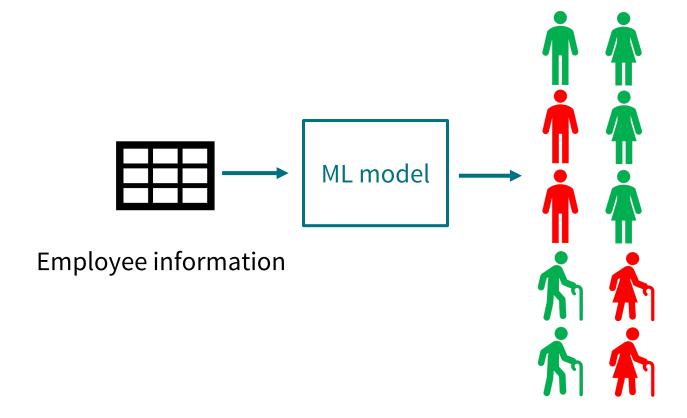


On the Fairness ROAD: Robust Optimization for Adversarial Debiasing

Vincent Grari*, Thibault Laugel*, Tatsunori Hashimoto, Sylvain Lamprier and Marcin Detyniecki

Context: algorithmic group fairness

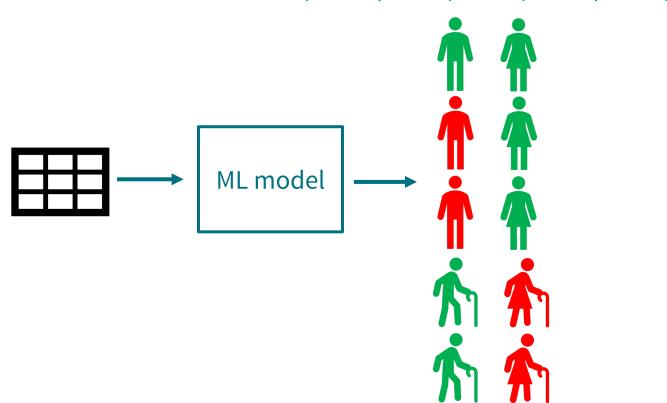


Deserves a raise or not

Context: algorithmic group fairness

Traditional group fairness

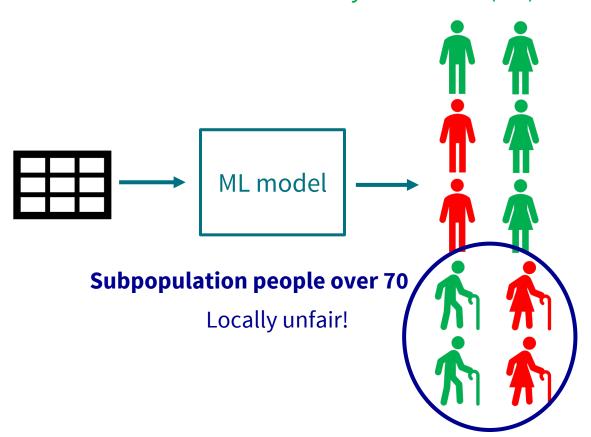
Globally fair model (DP):
$$\mathbb{P}(\hat{Y} = 1 | S = 1) = \mathbb{P}(\hat{Y} = 1 | S = 0)$$



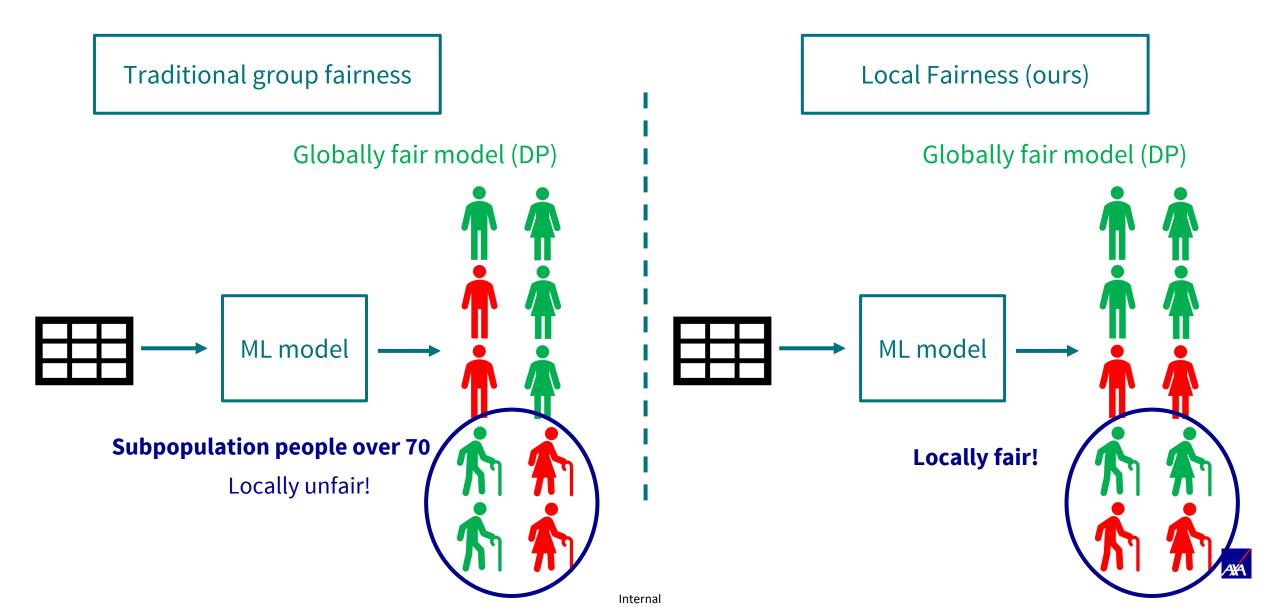
The Local (un)fairness problem

Traditional group fairness

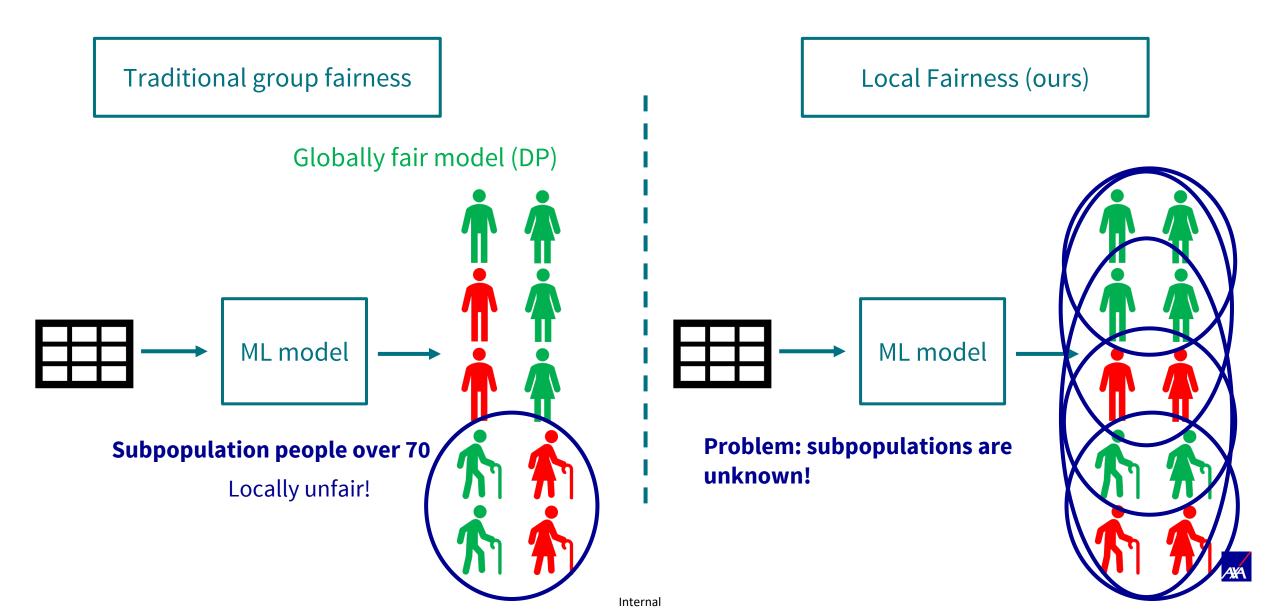
Globally fair model (DP)



The Local (Un)fairness problem



The Local (Un)fairness problem



Distributionally Robust Optimization (DRO) for Fairness

Traditional group fairness

$$\min_{W_f} \mathbb{E}_p[L_Y(f_{W_f}(x), y)]$$

$$s.t.DI_{(x,s)\sim p}(f_{W_f}(x), s) < \epsilon$$

Local Fairness (ours)

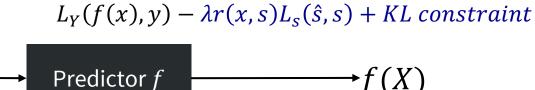
$$\min_{W_f} \mathbb{E}_p[L_Y(f_{W_f}(x), y)]$$

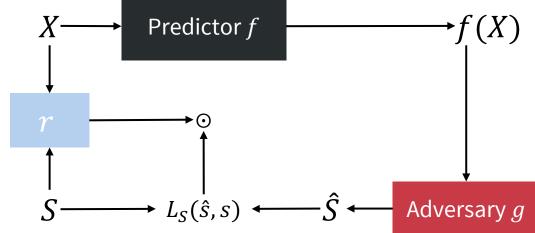
$$s.t.\max_{q \in Q} DI_{(x,s) \sim q}(f_{W_f}(x), s) < \epsilon$$

Q: set of "plausible" distributions ~set of subpopulations

In practice: KL divergence-ball around p

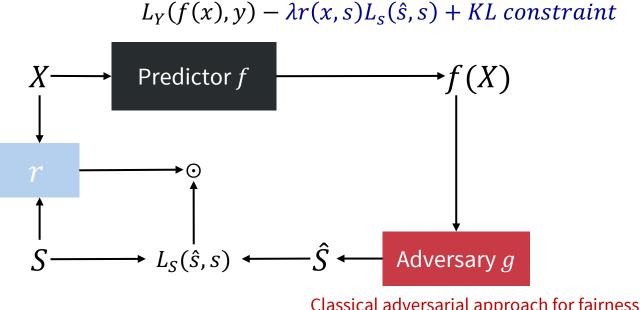
Adversarial model for Distributionally Robust Fairness

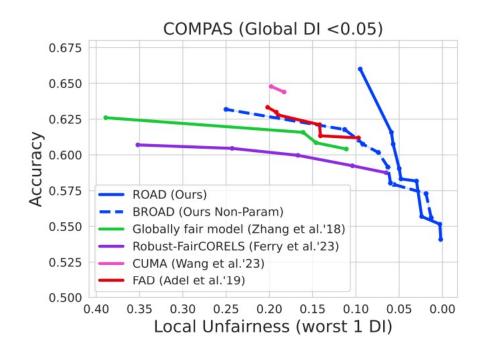




Classical adversarial approach for fairness

Adversarial model for Distributionally Robust Fairness





Results: more fair locally for the same levels of group fairness and accuracy

Thanks for watching!

Paper: https://openreview.net/forum?id=xnhvVtZtLD

Code: https://github.com/axa-rev-research/ROAD-fairness/

