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Mixture models

classification
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anomaly detection
sequence prediction

“Swiss army knife”

in stats and ML

Build more expressive

generative models

Fast scene rendering

in computer vision

Bishop and Nasrabadi, “Pattern Recognition and Machine Learning”, 2006 2
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Mixture models

p(X) =
K∑
i=1

wi pi(X) subject to wi ≥ 0,
K∑
i=1

wi = 1

(Hao Tang)

7 components can
only be added together!

McLachlan, Lee, and Rathnayake, “Finite mixture models”, 2019 3
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Far fewer components with subtractions
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Contributions

I How to learn subtractive mixture models?

II How much more expressive subtractive mixtures are?

III What is the relationship with other probabilistic models?
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Squaring mixtures

p(X) ∝
K∑
i=1

wi pi(X), wi ∈ R

How to ensure p(X) is positive?

By squaring!
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Squaring mixtures

p(X) ∝

(
K∑
i=1

wi pi(X)

)2
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i=1
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Squaring deep mixtures

(

p(X)

w1 w2 w3

p1 p2 p3

)
2

=
p2(X)

w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

p21 p22 p23 p1p2 p1p3 p2p3

Choi, Vergari, and Broeck, “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”, 2021 7
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Squaring deep mixtures

(

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

)
2

Jaini, Poupart, and Yu, “Deep Homogeneous Mixture Models: Representation, Separation, and Approximation”, 2018
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Squaring deep mixtures

fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙
⊙
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How much more expressive?

· · ·
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( W )
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squared subtractive mixtures

Martens and Medabalimi, “On the expressive efficiency of sum product networks”, 2014

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 10
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Unifying models via squaring

A1 A2 A3 A4

X1 X2 X3 X4

A1 A2 A3 A4

X1 X2 X3 X4

Born machines

⇒ (
V1[x1]

V2[x2]

V3[x3]

V4[x4]

W1

1

W2

⊙
⊙

⊙ )
2

p(x) ∝ κ(x)⊤Aκ(x)

withA ∈ Rd×d PSD
Positive Semi-Definite models

⇒ ∑∑∑
( W )2

Glasser et al., “Expressive power of tensor-network factorizations for probabilistic modeling”, 2019

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”, 2021 11



Unifying models via squaring

A1 A2 A3 A4

X1 X2 X3 X4

A1 A2 A3 A4

X1 X2 X3 X4

Born machines

⇒ (
V1[x1]

V2[x2]

V3[x3]

V4[x4]

W1

1

W2

⊙
⊙

⊙ )
2

p(x) ∝ κ(x)⊤Aκ(x)

withA ∈ Rd×d PSD
Positive Semi-Definite models

⇒ ∑∑∑
( W )2

Glasser et al., “Expressive power of tensor-network factorizations for probabilistic modeling”, 2019

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”, 2021 11



Takeaways

I Squared subtractive mixtures ...

II ... can be much more expressive ...

III ... and establish a unifying framework
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9 May, Halle B, 10:45
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