

On the Stability of Expressive Positional Encoding for Graphs

Yinan Huang^{*,1}, William Lu^{*, 2}, Joshua Robinson³, Yu Yang⁴, Muhan Zhang⁵, Stefanie Jegelka⁶, Pan Li¹

*equal contribution, ¹Georgia Institute of Technology, ²Purdue University, ³Stanford University, ⁴Tongji University, ⁵Peking University, ⁶MIT

Graph Neural Networks

- Graph neural networks (GNNs) adopts message passing scheme:
 - 1. Aggregate features from neighbor into message
 - 2. Update self features based on message and previous self features

$$h_{v}^{(t+1)} = f_{update}\left(h_{v}^{(t)}, f_{agg}\left(\left\{h_{u}^{(t)} \middle| u \in N_{v}\right\}\right)\right),$$

where N_{v} denotes the set of the neighbors of node v .

.

Graph Neural Networks

- GNNs suffer from limited expressive power:
 - GNNs cannot approximate certain functions over graphs

e.g. count k-cycles, $k \ge 3$

How powerful are graph neural networks? Xu et al., ICLR 2019 Weisfeiler and leman go neural: Higher-order graph neural networks, Morris et al., AAAI 2019 Can graph neural networks count substructures? Chen et al., NeurIPS 2020

Positional Encodings for Graphs

- Positional encoding (PE)
 - Graph adjacency matrix $A \in \mathbb{R}^{n \times n}$, denote PE by $z(A) \in \mathbb{R}^{n \times p}$,

where $[z(A)]_v$ is PE for node v

- $[z(A)]_{v}$ characterizes the position of node v in the graph
- Helps GNN distinguish nodes and improve expressivity

Position encoding space

Position encoding space

Key question: How to design and properly use positional encodings for graphs?

Laplacian Eigenmaps

• Graph (Normalized) Laplacian: $L = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$

A: adjacency matrix, D: diagonal degree matrix

- Laplacian eigenmaps: $L = V \operatorname{diag}(\Lambda) V^{T}$ where $V = [v_{1}, v_{2}, ..., v_{n}],$ $\Lambda = (\lambda_{1}, \lambda_{2}, ..., \lambda_{n}), \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}.$
- $V_{u,1:p}$ serves as the positional encoding for node u

а

b

С

C

е

Motivation: the Ambiguity Issue of Laplacian Eigenmaps

• Basis ambiguity

The decomposition is not unique:

 $L = V \operatorname{diag}(\Lambda) V^{T} = (VQ) \operatorname{diag}(\Lambda) (VQ)^{T}$

for any orthogonal and block-diagonal $Q \in \bigoplus_i O(d_i)$, if the eigenvalues follow $\lambda_1 = \cdots = \lambda_{d_1} < \lambda_{d_1+1} = \cdots = \lambda_{d_1+d_2} < \cdots$, where $d'_i s$ are eigenvalue multiplicities. Motivation: the Ambiguity Issue of Laplacian Eigenmaps

• Basis ambiguity

The decomposition is not unique:

 $L = V \operatorname{diag}(\Lambda) V^T = (VQ) \operatorname{diag}(\Lambda) (VQ)^T$

for any orthogonal and block-diagonal $Q \in \bigoplus_i O(d_i)$, if the eigenvalues follow $\lambda_1 = \cdots = \lambda_{d_1} < \lambda_{d_1+1} = \cdots = \lambda_{d_1+d_2} < \cdots$, where $d'_i s$ are eigenvalue multiplicities.

Such non-uniqueness -> the ambiguity issues of the model
 Laplacian Decomposition

Same input graph
$$L$$
 $(random seed 0)$ (V, Λ) (V, Λ) H Different model output $GNN \neq Z'$

Motivation: the Stability Issue of Laplacian Eigenmaps

- Stability generalizes the idea "same input, same output", stating that "small perturbation to input, small change of output".
- Consider two closed Laplacian L, L' and their PE Z, Z'

where $P_* = \operatorname{argmin}_{P \in \Pi_n} ||L - PL'P^T||$, Π_n denotes the set of n-by-n permutation matrix

We generally denote $\|\cdot\|$ as L2 norm for vectors and F-norm for matrices

Motivation: the Stability Issue of Laplacian Eigenmaps

• Stability generalizes the idea "same input, same output", stating that "small perturbation to input, small change of output".

Definition (Stability) A positional encoding function $z(\cdot): \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times p}$ is called stable, if for some c, C > 0, for any L, L', it satisfies $||z(L) - P_*z(L')|| \le C ||L - P_*L'P_*^T||^c$ where $P_* = \operatorname{argmin}_{P \in \Pi_n} ||L - PL'P^T||$, Π_n denotes the set of nby-n permutation matrix

We generally denote $\|\cdot\|$ as L2 norm for vectors and F-norm for matrices

• Instead of the normal Lipschitz continuity as stability definition, we use Hölder continuity, a looser condition.

Existing Ways to Use Laplacian Eigenmaps are Unstable

- randomly sign flipping [Dwivedi & Bresson, 2021; Kreuzer et al., 2021]
- Use sign invariant functions [Lim et al.]
- Use basis invariant functions [Lim et al.]

- Ambiguity gets addressed.
- Stability does not hold for all of them (see Appendix C of our paper for details).

A generalization of transformer networks to graphs, Dwivedi & Bresson, 2021 Rethinking graph transformers with spectral attention, Kreuzer et al., NIPS 2021 Sign and Basis Invariant Networks for Spectral Graph Representation Learning, Lim et al., ICLR 2023

10

Stable and Expressive Positional Encodings (SPE)

• Our choice

$$z(L) = z(V, \Lambda) = \rho(V \operatorname{diag}(\phi_1(\Lambda))V^T, \dots, V \operatorname{diag}(\phi_m(\Lambda))V^T)$$

Where $\phi_i : \mathbb{R}^d \to \mathbb{R}^d$ are permutation equivariant functions in d. $\rho : \mathbb{R}^{n \times n \times m} \to \mathbb{R}^{n \times p}$ is another permutation equivariant function in

Key results: stability and expressivity of SPE

SPE: $z(L) = z(V, \Lambda) = \rho(V \operatorname{diag}(\phi_1(\Lambda))V^T, \dots, V \operatorname{diag}(\phi_m(\Lambda))V^T)$

Where $\phi_i : \mathbb{R}^d \to \mathbb{R}^d$, $\rho : \mathbb{R}^{n \times n \times l} \to \mathbb{R}^{n \times p}$ are permutation equivariant Lipschitz continuous functions.

- **Stability:** SPE is provably stable (Theorem 3.1)
- Out-of-distribution guarantee (Proposition 3.1)
- **Expressivity**: SPE can count at least 5-cycles with ρ being 2-IGN (Proposition 3.4)

Numerical Evaluation I

• Prediction performance over ZINC and Alchemy (molecular property prediction)

Dataset	PE method	#PEs	#param	Test MAE
ZINC	No PE	N/A	575k	$0.1772_{\pm 0.0040}$
	PEG	8	512k	$0.1444_{\pm 0.0076}$
	PEG	Full	512k	$0.1878_{\pm 0.0127}$
	SignNet	8	631k	$0.1034_{\pm 0.0056}$
	SignNet	Full	662k	$0.0853_{\pm 0.0026}$
	BasisNet	8	442k	$0.1554_{\pm 0.0068}$
	BasisNet	Full	513k	$0.1555_{\pm 0.0124}$
	SPE	8	635k	$0.0736_{\pm 0.0007}$
	SPE	Full	650k	$0.0693 _{\pm 0.0040}$
Alchemy	No PE	N/A	1387k	$0.112_{\pm 0.001}$
	PEG	8	1388k	$0.114_{\pm 0.001}$
	SignNet	Full	1668k	$0.113_{\pm 0.002}$
	BasisNet	Full	1469k	$0.110_{\pm 0.001}$
	SPE	Full	1785k	$0.108_{\pm 0.001}$

Table 1: Test MAE results (4 random seeds) on ZINC and Alchemy.

Numerical Evaluation II

- Idea: control the stability by regulating the complexity (Lipschitz constant) of PE functions. What is the trade-off between stability and:
 ➤ the model generalization gap (test loss training loss)?
 ➤ the expressive power (final training loss after convergence)
- Setup: Use ZINC

 \succ study the training error and the generalization gap to the test set.

Numerical Evaluation III

• Evaluation over DrugOOD: Molecular graphs with three different types (Assay, Scaffold, Size) of distribution shifts between the training and test datasets

Domain	PE Method	ID-Val (AUC)	ID-Test (AUC)	OOD-Val (AUC)	OOD-Test (AUC)
Assay	No PE	$92.92_{\pm 0.14}$	$92.89_{\pm 0.14}$	$71.02_{\pm 0.79}$	$71.68_{\pm 1.10}$
	PEG	$92.51_{\pm 0.17}$	$92.57_{\pm 0.22}$	$70.86_{\pm 0.44}$	$71.98_{\pm 0.65}$
	SignNet	$92.26_{\pm 0.21}$	$92.43_{\pm 0.27}$	$70.16_{\pm 0.56}$	$72.27_{\pm 0.97}$
	BasisNet	$88.96_{\pm 1.35}$	$89.42_{\pm 1.18}$	$71.19_{\pm 0.72}$	$71.66_{\pm 0.05}$
I	SPE	$92.84_{\pm 0.20}$	$92.94_{\pm 0.15}$	$71.26_{\pm 0.62}$	$72.53_{\pm 0.66}$
Scaffold	No PE	$96.56_{\pm 0.10}$	$87.95_{\pm 0.20}$	$79.07_{\pm 0.97}$	$68.00_{\pm 0.60}$
	PEG	$95.65_{\pm 0.29}$	$86.20_{\pm 0.14}$	$79.17_{\pm 0.29}$	$69.15_{\pm 0.75}$
	SignNet	$95.48_{\pm 0.34}$	$86.73_{\pm 0.56}$	$77.81_{\pm 0.70}$	$66.43_{\pm 1.06}$
	BasisNet	$85.80_{\pm 3.75}$	$78.44_{\pm 2.45}$	$73.36_{\pm 1.44}$	$66.32_{\pm 5.68}$
I	SPE	$96.32_{\pm 0.28}$	$88.12_{\pm 0.41}$	$80.03_{\pm 0.58}$	$69.64_{\pm 0.49}$
Size	No PE	$\overline{93.78}_{\pm 0.12}$	$93.60_{\pm 0.27}$	$82.76_{\pm 0.04}$	$66.04_{\pm 0.70}$
	PEG	$92.46_{\pm 0.35}$	$92.67_{\pm 0.23}$	$82.12_{\pm 0.49}$	$66.01_{\pm 0.10}$
	SignNet	$93.30_{\pm 0.43}$	$93.20_{\pm 0.39}$	$80.67_{\pm 0.50}$	$64.03_{\pm 0.70}$
	BasisNet	$86.04_{\pm 4.01}$	$85.51_{\pm 4.04}$	$75.97_{\pm 1.71}$	$60.79_{\pm 3.19}$
	SPE	$92.46_{\pm 0.35}$	$92.67_{\pm 0.23}$	$82.12_{\pm 0.49}$	$66.02_{\pm 1.00}$

Table 2: AUROC results (5 random seeds) on DrugOOD.

Thank you!

Paper: On the Stability of Expressive Positional Encodings for Graphs. Huang et al., ICLR 2024

Paper link: https://openreview.net/pdf?id=xAqcJ9XoTf

Code: <u>https://github.com/Graph-COM/SPE</u>