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Graph Neural Networks
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where 𝑁𝑣 denotes the set of the neighbors of node 𝑣.
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• Graph neural networks (GNNs) adopts message passing scheme:
1. Aggregate features from neighbor into message
2. Update self features based on message and previous self features



Graph Neural Networks
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• GNNs suffer from limited expressive power:
• GNNs cannot approximate certain functions over graphs

a b

e.g. count k-cycles, 𝑘 ≥ 3

How powerful are graph neural networks? Xu et al., ICLR 2019

Weisfeiler and leman go neural: Higher-order graph neural networks, Morris et al.,  AAAI 2019
Can graph neural networks count substructures? Chen et al., NeurIPS 2020
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Positional Encodings for Graphs
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• Positional encoding (PE)
• Graph adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛, denote PE by

z 𝐴 ∈ ℝ𝑛×𝑝,
where [𝑧 𝐴 ]𝑣 is PE for node 𝑣

• [𝑧 𝐴 ]𝑣 characterizes the position of node 𝑣 in the graph
• Helps GNN distinguish nodes and improve expressivity

Position encoding space
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Position encoding space
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Key question: How to design and properly use positional 
encodings for graphs? 



Laplacian Eigenmaps
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• Graph (Normalized) Laplacian: 

𝐿 = 𝐼 − 𝐷−
1
2𝐴𝐷−

1
2

Laplacian Eigenmaps for D.R., Belkin & Niyogi, Neural Computation, 2003 

• Laplacian eigenmaps: 
𝐿 = Vdiag(Λ)𝑉𝑇

where V = 𝑣1, 𝑣2, … , 𝑣𝑛 ,
Λ = 𝜆1, 𝜆2, … , 𝜆𝑛 , 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛.

𝑉𝑢,1:𝑝 serves as the positional encoding for 
node 𝑢
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Positional encoding

𝐴: adjacency matrix, 𝐷: diagonal degree matrix  



Motivation: the Ambiguity Issue of Laplacian Eigenmaps
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• Basis ambiguity 

The decomposition is not unique: 

𝐿 = 𝑉diag Λ 𝑉𝑇 = (𝑉𝑄)diag Λ (𝑉𝑄)𝑇

for any orthogonal and block-diagonal Q ∈⊕𝑖 𝑂 𝑑𝑖 ,
if the eigenvalues follow 𝜆1 = ⋯ = 𝜆𝑑1

< 𝜆𝑑1+1 = ⋯ =

𝜆𝑑1+𝑑2
< ⋯ , where 𝑑𝑖

′𝑠 are eigenvalue multiplicities. 



Motivation: the Ambiguity Issue of Laplacian Eigenmaps
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• Basis ambiguity 

The decomposition is not unique: 

𝐿 = 𝑉diag Λ 𝑉𝑇 = 𝑉Q diag Λ (𝑉𝑄)𝑇  

for any orthogonal and block-diagonal Q ∈⊕𝑖 𝑂 𝑑𝑖 ,
if the eigenvalues follow 𝜆1 = ⋯ = 𝜆𝑑1

< 𝜆𝑑1+1 = ⋯ =

𝜆𝑑1+𝑑2
< ⋯ , where 𝑑𝑖

′𝑠 are eigenvalue multiplicities. 

• Such non-uniqueness -> the ambiguity issues of the 
model

Same input graph Different model output



Motivation: the Stability Issue of Laplacian Eigenmaps
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• Stability generalizes the idea “same input, same output”,

stating that “small perturbation to input, small change of 

output”.

• Consider two closed Laplacian 𝐿, 𝐿′ and their PE 𝑍, 𝑍′

≤ 𝜖

Stability property

𝐿 𝑃∗𝐿′𝑃∗
⊤

−

F

𝑍 𝑃∗𝑍′

−

F

≤ 𝑐𝑜𝑛𝑠𝑡. ⋅ 𝜖𝑐⇒
?

where P∗ = argminP∈Π𝑛
𝐿 − 𝑃𝐿′𝑃𝑇  , Π𝑛 denotes the set of 

n-by-n permutation matrix 

We generally denote ‖ ⋅ ‖ as L2 norm for vectors and F-norm 

for matrices



Motivation: the Stability Issue of Laplacian Eigenmaps
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• Stability generalizes the idea “same input, same output”,

stating that “small perturbation to input, small change of 

output”.

We generally denote ‖ ⋅ ‖ as L2 norm for vectors and F-norm for matrices

Definition (Stability)
A positional encoding function 𝑧 ⋅ : ℝ𝑛×𝑛 → ℝ𝑛×𝑝 is called 
stable, if for some 𝑐, 𝐶 > 0, for any 𝐿, 𝐿′, it satisfies

|𝑧 𝐿 − 𝑃∗𝑧 𝐿′ | ≤ 𝐶 𝐿 − 𝑃∗𝐿′𝑃∗
𝑇 𝑐

where 𝑃∗ = argminP∈Π𝑛
𝐿 − 𝑃𝐿′𝑃𝑇  , Π𝑛 denotes the set of n-

by-n permutation matrix 

• Instead of the normal Lipschitz continuity as stability 

definition, we use H ሷ𝑜lder continuity, a looser condition.



Existing Ways to Use Laplacian Eigenmaps are Unstable  
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• randomly sign flipping [Dwivedi & Bresson, 2021; Kreuzer et al., 2021]

• Use sign invariant functions [Lim et al.]

• Use basis invariant functions [Lim et al.]

• Ambiguity gets addressed. 

• Stability does not hold for all of them (see Appendix C of our 
paper for details). 

A generalization of transformer networks to graphs, Dwivedi & Bresson, 2021
Rethinking graph transformers with spectral attention, Kreuzer et al., NIPS 2021
Sign and Basis Invariant Networks for Spectral Graph Representation Learning, Lim et al., ICLR 2023
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Stable and Expressive Positional Encodings (SPE)

𝑧 𝐿 = 𝑧 𝑉, Λ = 𝜌(𝑉diag(𝜙1 Λ )𝑉𝑇, … , 𝑉diag(𝜙𝑚 Λ )𝑉𝑇)

• Our choice 

Where 𝜙𝑖: ℝ𝑑 → ℝ𝑑 are permutation equivariant functions in 𝑑. 
𝜌: ℝ𝑛×𝑛×𝑚 → ℝ𝑛×𝑝 is another permutation equivariant function in 
n. 
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Key results: stability and expressivity of SPE

SPE: 𝑧 𝐿 = 𝑧 𝑉, Λ = 𝜌(𝑉diag(𝜙1 Λ )𝑉𝑇 , … , 𝑉diag(𝜙𝑚 Λ )𝑉𝑇)

Where 𝜙𝑖: ℝ𝑑 → ℝ𝑑 , 𝜌: ℝ𝑛×𝑛×𝑙 → ℝ𝑛×𝑝 are permutation 
equivariant Lipschitz continuous functions.

• Stability: SPE is provably stable (Theorem 3.1)

• Out-of-distribution guarantee (Proposition 3.1)

• Expressivity: SPE can count at least 5-cycles with 𝜌 being 2-IGN 
(Proposition 3.4)

Invariant and equivariant graph networks, Maron et al., ICLR 2019 
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Numerical Evaluation I

• Prediction performance over ZINC and Alchemy (molecular 
property prediction)
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Numerical Evaluation II

• Idea: control the stability by regulating the complexity (Lipschitz 
constant) of PE functions. What is the trade-off between stability and:
➢ the model generalization gap (test loss - training loss)?
➢ the expressive power (final training loss after convergence)

• Setup: Use ZINC
➢ study the training error and the generalization gap to the test set. 
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Numerical Evaluation III

• Evaluation over DrugOOD: Molecular graphs with three 
different types (Assay, Scaffold, Size) of distribution shifts 
between the training and test datasets



Thank you!

Paper: On the Stability of Expressive Positional Encodings for Graphs. Huang et al., ICLR 2024

Paper link: https://openreview.net/pdf?id=xAqcJ9XoTf

Code: https://github.com/Graph-COM/SPE
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https://openreview.net/pdf?id=xAqcJ9XoTf
https://github.com/Graph-COM/SPE
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