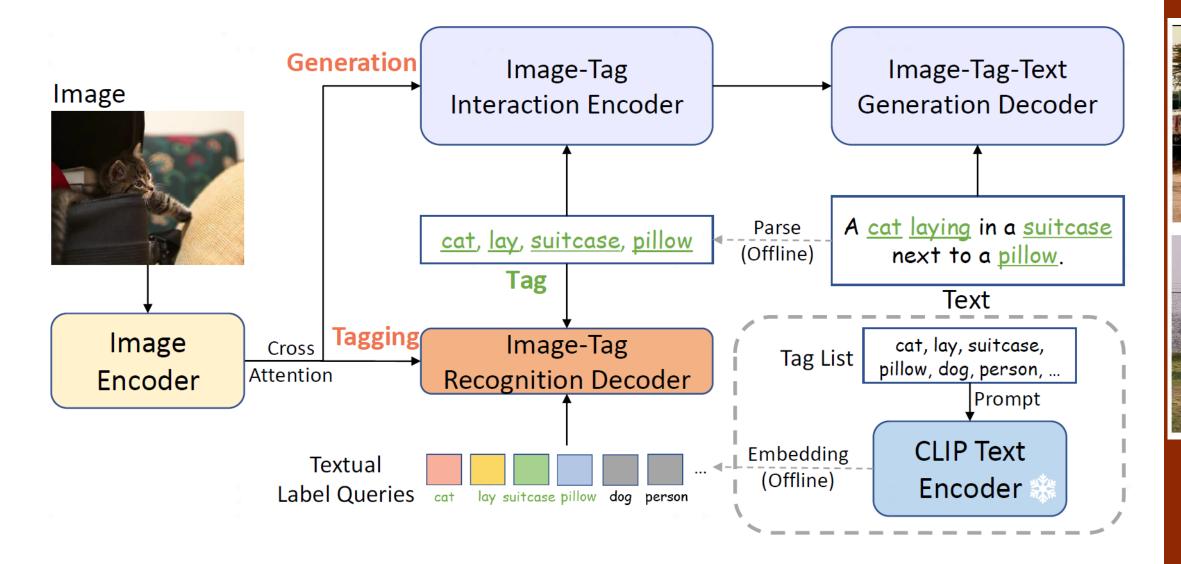
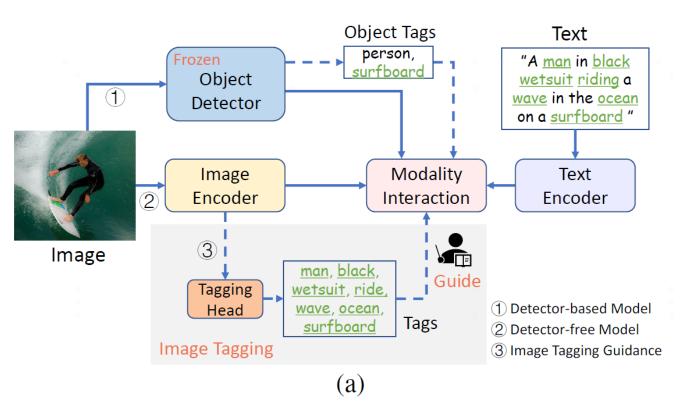


Tag2Text: Guiding Vision-Language Model via Image Tagging


Xinyu Huang, Youcai Zhang, Jinyu Ma, Weiwei Tian, Rui Feng, Yuejie Zhang, Yaqian Li, Yandong Guo, Lei Zhang

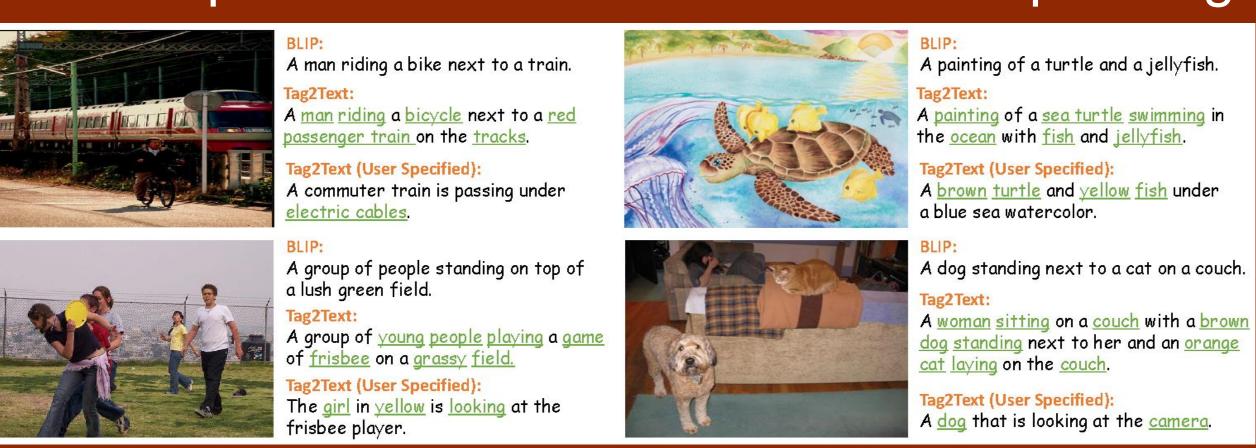
https://github.com/xinyu1205/recognize-anything


Model Framework

- The core of Tag2Text lies in the introduction of **image tagging** supervised by the **annotation-free image tags** parsed from its paired text.
- Image Tagging: Training robust tagging model from large-scale image-text pairs.
 Textual label queries based on CLIP text encoder empower open-set tagging.
- Image Captioning: Tag2Text learns to generate text related to the image by leveraging the automatically parsed tags, resulting in comprehensive and controllable texts with the guidance of recognized tags.

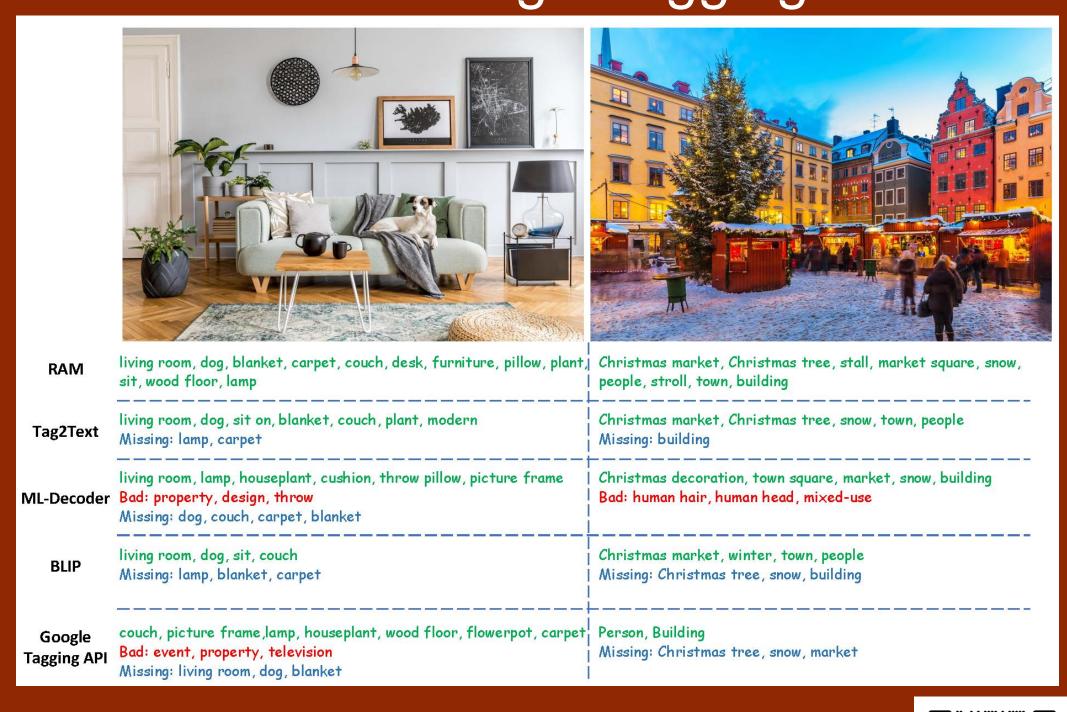
Image Tagging vs. Object Detection

- Prior works demonstrate the effectiveness of incorporating object tags into VL models based on an off-the-shelf detector.
- Since the detector restricts the model's capacity and is time-consuming, recent VL models normally avoid using a detector, resulting in poor utilization of valuable tags.
- We re-introduce tag guidance into detector-free VL models via image tagging with a simple tagging head. The tagging head is supervised by annotation-free image tags parsed from its paired text. Our model achieves a superior tagging ability and effectively enhances vision-language tasks.



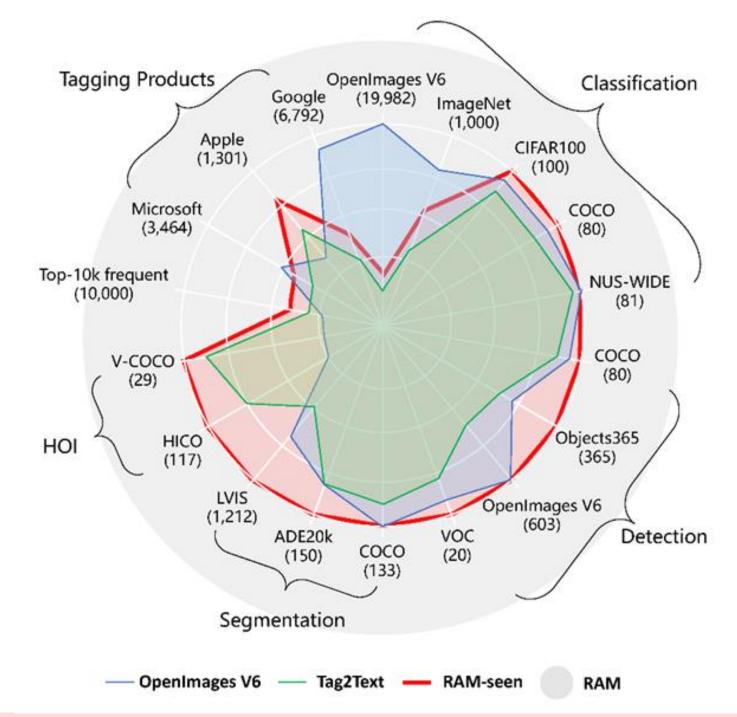
Method	Object	Image		
Method	Detector	Tagging		
No Manual	X	✓		
Annotation	'			
Enable	X	1		
End-to-End				
Tag	Objects	Objects, Scenes,		
Categories	Objects	Attributes, Actions		
Additional	> 42M	/ 5M		
Paramters	≥ 42M	≤ 5M		
Running	∼ 153ms	~40ms		
Time	\sim 1331118	\sim 40IIIS		

Highlight


We introduce Tag2text, a vision-language model guided by image tagging:

- Powerful Image Tagging.
- Comprehensive and Controllable Captioning.

From Tag2Text to Recognize Anything Model (RAM):


More Powerful Image Tagging.

Codes, demos and models at

More Valuable Tags

- Our models offer more comprehensive and commonly used tags, including objects, scenes, attributes, and actions.
- Tag2Text recognizes 3,400+ fixed tags.
- RAM upgrades the number to **6,400+**, and develop **open-set capability**.

Zero-Shot Image Recognition

 Tag2Text showcases superior zero-shot image recognition capabilities, surpassing other vision-language models with significantly larger training dataset.

Methods	Pre-train	Evaluation	OPPO		OpenImages			COCO			
Withous	#Images	Paradigm	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall
CLIP (Radford et al., 2021)	400M	Alignment	63.4	76.6	54.1	63.0	77.9	52.9	48.2	64.0	38.7
DiHT (Radenovic et al., 2023)	438M	Alignment	66.8	75.3	60.0	66.3	77.0	65.3	48.9	51.4	46.7
BLIP (Li et al., 2022)	129M	Alignment	65.7	76.7	57.5	64.8	78.6	55.1	54.3	65.2	46.5
BLIP (Li et al., 2022)	129M	Captioning	58.6	79.1	46.6	56.6	73.7	45.9	55.7	93.0	39.8
BLIP-2 (Li et al., 2023)	129M	Captioning	58.2	72.8	48.5	58.1	74.2	47.8	59.1	95.5	42.8
Tag2Text (Ours)	14M	Captioning	65.9	82.4	54.9	62.7	76.7	53.0	62.7	93.2	47.2
Tag2Text (Ours)	4M	Tagging	75.7	76.6	74.8	71.8	79.7	65.3	72.6	80.5	66.1
Tag2Text (Ours)	14M	Tagging	78.6	77.9	79.4	72.7	80.1	66.6	71.5	80.1	64.5

- RAM further expands training image tags through an automatic data engine (Parsing + Generating + Cleaning).
- RAM's zero-shot generalization to OpenImages-common is superior to ML-Decoder's full supervision.

Methods	Tags [‡]	Mu	lti-label Classif	ication	Detection	Segmentation			
		OPPO -common	OpenImages -common	OpenImages -rare	COCO-80	COCO-133	ADE20k	ADE20k -clean	
ML-Decoder [23] MKT [8]	33.9M 0.6M	82.4 [†] 78.2	85.8 77.8	79.5 63.5	72.8 [†] 62.9	x 51.0	x 37.1	x 38.4	
Tag2Text-4M [10] Tag2Text-14M [10]	11.4M 33.6M	83.0 85.4	82.9 83.4	X X	78.3 [†] 78.2 [†]	66.9 [†] 67.1 [†]	×	×	
RAM-4M RAM-14M	39.3M 119.9M	85.6 86.9	86.0 86.5	66.7 69.2	79.0 80.6	68.3 69.4	51.5 55.4	53.2 56.9	

Green means fully supervised learning; Blue means zero-shot performance.