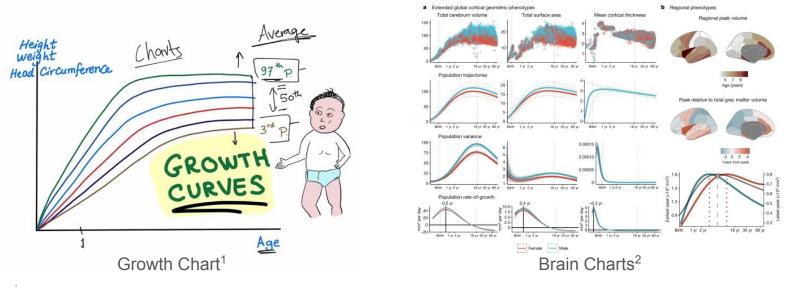


NAISR: A 3D Neural Additive Model for Interpretable Shape Representation


Yining Jiao^{1,*}, Carlton Zdanski¹, Julia Kimbell¹, Andrew Prince¹, Cameron Worden¹, Samuel Kirse², Christopher Rutter³, Benjamin Shields¹, William Dunn¹, Jisan Mahmud¹, Marc Niethammer^{1,*}; for the Alzheimer's Disease Neuroimaging Initiative

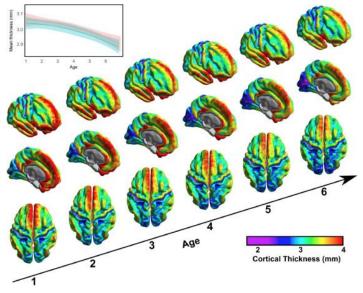
> ¹University of North Carolina at Chapel Hill ²Wake Forest School of Medicine ³The Ohio State University College of Medicine

> > First author 🌲 Corresponding author

Shape Discovery

For scientific and medical discovery, it is very important to capture the individual dependencies of shapes on covariates.

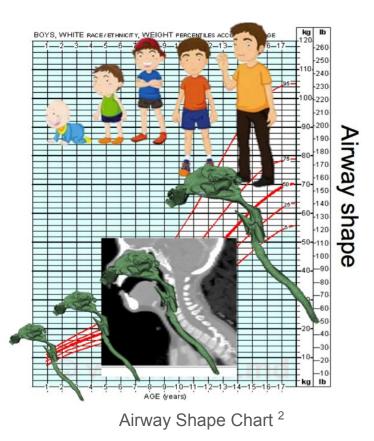
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL


1.

https://www.youtube.com/watch?app=desktop&v=jyxjXZ0vIz0

2. Bethlehem, Richard Al, et al. "Brain charts for the human lifespan." Nature 604.7906 (2022): 525-533.

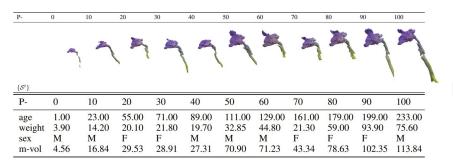
Shape Discovery


1D characteristrics \implies 3D shape representation

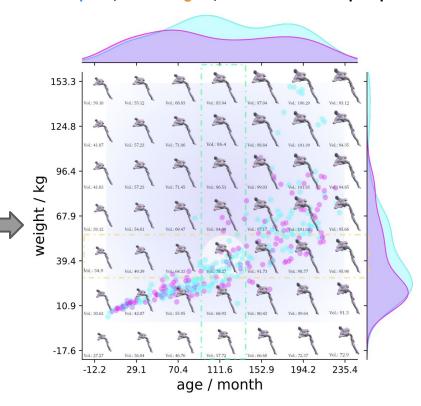
Brain Morphometry Chart¹

1.

2.

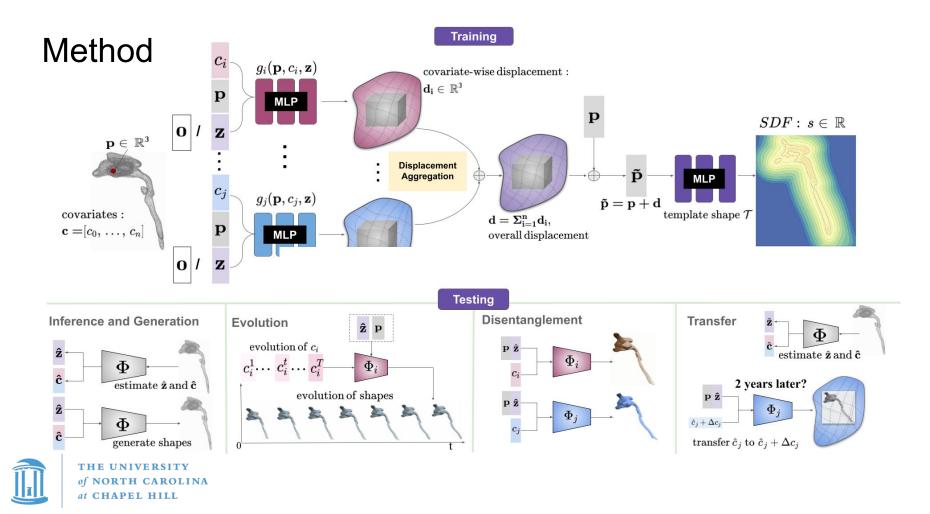

THE UNIVERSITY

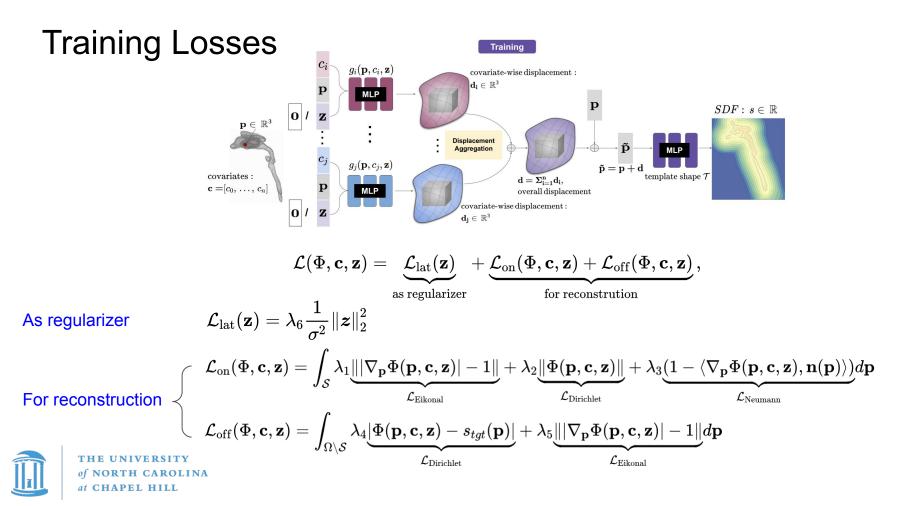
of NORTH CAROLINA at CHAPEL HILL


Zhang, Hongxi, et al. "Growth charts of brain morphometry for preschool children." *NeuroImage* 255 (2022): 119178.

Motivation of **NAISR**

Complete, Disentangled, and Universal Shape Space




What is a good shape representation for Scientific Discovery?

- Given an atlas shape, how can one accurately represent individual shapes?
- Given a shape, how can one disentangle different covariate effects from each other?
- Given a covariate, e.g., age, how does the shape evolve based on this covariate?
- Given a random shape, how will this shape develop after a period of time?

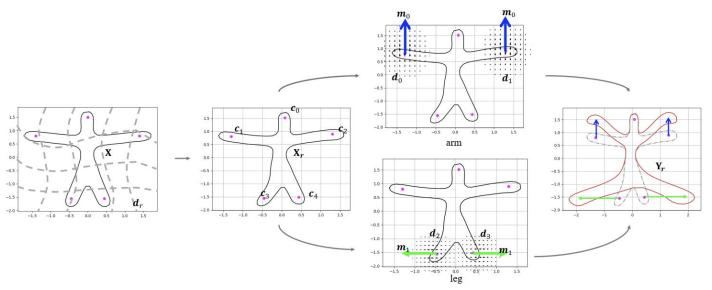
Method	Implicit	Deformable	Disentangleable	Evolvable	Transferable	Interpretable
ConditionalTemplate (Dalca et al., 2019)	×	~	×	\checkmark	×	×
3DAttriFlow (Wen et al., 2022)	×	1	×	~	×	×
DeepSDF (Park et al., 2019)	~	×	×	×	×	×
A-SDF (Mu et al., 2021)	~	×	×	~	~	×
DIT (Zheng et al., 2021), DIF (Deng et al., 2021), NDF (Sun et al., 2022a)	~	1	×	×	×	×
NASAM (Wei et al., 2022)	~	1	×	\checkmark	×	×
Ours (NAISR)	1			\checkmark		\checkmark

Starman

ADNI Hippocampus

Pediatric Airway

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL


Starman

THE UNIVERSITY of NORTH CAROLINA

at CHAPEL HILL

ADNI Hippocampus

Pediatric Airway

- Training set: 5041 shapes from 1000 different starmen;
- Testing set: 4966 shapes from another 1000 starmen;
 - 2 covariates: arms & leg movements;
 - Random number of observations are simulated for each individual.

Starman

ADNI Hippocampus

Pediatric Airway

P-	0	10	20	30	<mark>40</mark>	50	60	70	80	90	100
				Ser.							
	2				• •	5 📲					
$\{\mathcal{S}^t\}$	0	1	2	3	4	5	6	7	8	9	10
	-	1 68.4	2 71.2	3 72.6	4 74.2	5 76.2	6 77.9	7 79.8	8 82.0	<u>9</u> 85.2	
age	0 55.2 No	1 68.4 No	-				-	7 79.8 Yes	-	-	10 90.8 No
age AD	55.2		71.2	72.6	74.2	76.2	77.9		82.0	85.2	90.8
$\{S^t\}$ age AD sex edu	55.2 No	No	71.2 Yes	72.6 No	74.2 No	76.2 No	77.9 Yes	Yes	82.0 No	85.2 No	90.8 No

# observations	1	2	3	4	5	6
# patients	3	10	410	5	7	54

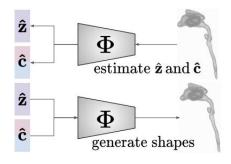
- 1632 hippocampus shapes from MR images;
- 80%-20% split by patients;
- 4 covariates (age, sex, AD, education length).

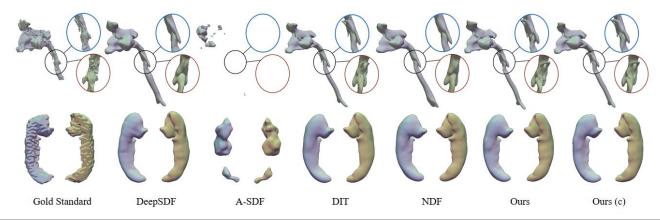
Starman

ADNI Hippocampus

Pediatric Airway

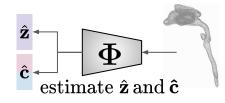
P-	0	10	20	30	40	50	60	70	80	90	100
	~	7	-		2		3	7	2	2	2
$\{S^t\}$ P-	0	10	20	30	40	50	60	70	80	90	100
	1.00	23.00	55.00	71.00	89.00	111.00	129.00	161.00	179.00	199.00	233.00

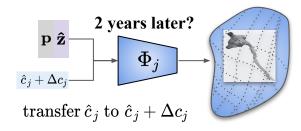

# observations	1	2	3	4	5	6	7	9	11
# patients	229	12	6	8	3	2	1	1	1


- 357 upper airway shapes from CT images
- 80%-20% train-test split by patient (instead of shapes).
- Each shape has 3 covariates (age, weight, sex)

Results - Shape Reconstruction

Inference and Generation




			Sta	rman			ADNI Hippocampus							Pediatric Airway					
	$CD \downarrow EMD \downarrow$		[D↓	HD↓		CI	CD↓		EMD ↓		$HD\downarrow$		D↑	$\text{EMD}\downarrow$		HD↓			
	μ	Μ	μ	Μ	μ	M	μ	Μ	μ	Μ	μ	M	μ	M	μ	Μ	μ	M	
DeepSDF	0.117	0.105	1.941	1.887	6.482	6.271	0.157	0.140	2.098	2.035	9.762	9.276	0.077	0.052	1.401	1.266	10.765	9.446	
A-SDF	0.173	0.092	2.01	1.668	8.806	6.949	1.094	1.162	7.156	7.667	25.092	25.938	2.647	1.178	10.302	9.068	47.172	37.835	
A-SDF (c)	0.049	0.043	1.298	1.261	5.388	4.964	0.311	0.294	3.136	3.099	13.852	13.003	0.852	0.226	4.090	2.890	30.848	21.965	
DIT	0.281	0.181	2.727	2.497	10.295	8.442	0.156	0.142	2.096	2.054	9.465	9.123	0.094	0.049	1.414	1.262	11.524	10.228	
NDF	1.086	0.736	5.364	4.821	21.098	19.705	0.253	0.213	2.699	2.58	11.328	10.947	0.238	0.117	2.174	1.737	14.950	12.516	
Ours	0.111	0.072	1.709	1.515	7.951	7.141	0.174	0.153	2.258	2.191	10.019	9.521	0.067	0.039	1.233	1.132	10.333	8.404	
Ours (c)	0.049	0.036	1.276	1.156	5.051	4.666	0.126	0.116	1.847	1.81	8.586	8.153	0.084	0.044	1.345	1.190	10.719	8.577	

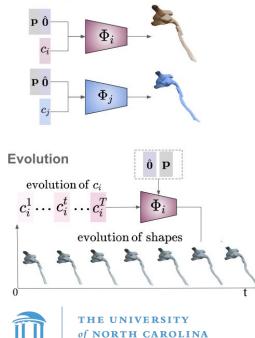
at CHAPEL HILL

Results - Shape Transfer

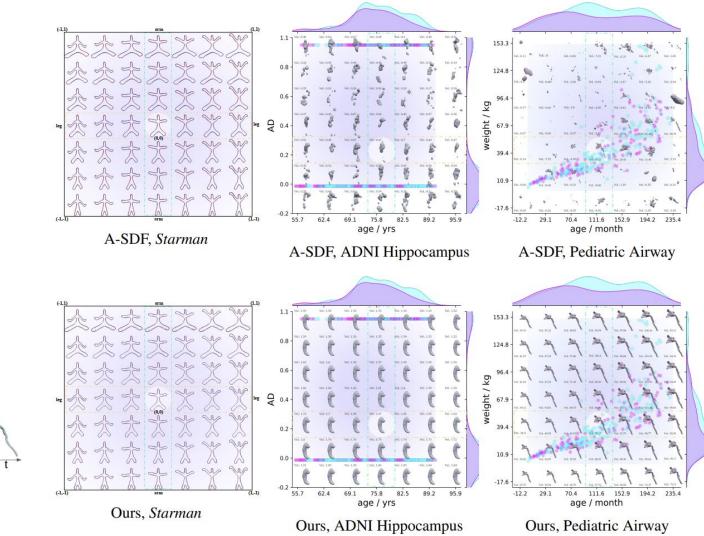

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Star	man			ADNI H	lippocampus	Pediatric Airway		
		CI	D↓	EMD ↓		HD↓			VD↓	VD↓		
	w.C.	$\mu$	Μ	$\mu$	M	$\mu$	M	$\mu$	M	$\mu$	M	
A-SDF	×	0	0	0.009	0.008	0.036	0.034	0.518	0.488	81.07	82.92	
A-SDF	$\checkmark$	0	0	0.009	0.009	0.036	0.035	0.215	0.177	41.46	40.96	
Ours	X	0.003	0.002	0.025	0.023	0.094	0.077	0.086	0.063	12.82	8.84	
Ours	$\checkmark$	0.009	0.002	0.031	0.025	0.116	0.083	0.089	0.071	11.23	9.65	



#### **Results - Shape Transfer**

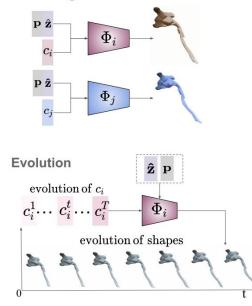

Given a new airway shape  $\frown$  , we estimate  $\hat{\mathbf{z}}$  at  $t_0$ , transfer shape to  $t_1 \dots t_{10}$ 

#time	0	1	2	3	4	5	6	7	8	9	10
	*	1	20	-	2			<b>k</b> 2		*	*
	7				1 -	}	7 ~	1 -	1 -		
			V				2	J			
$\{\mathcal{S}^t\}$				~					71	- T	
# time	0	1	2	3	4	5	6	7	8	9	10
age	154	155	157	159	163	164	167	170	194	227	233
. 1.	55.2	60.9	64.3	65.25	59.25	59.2	65.3	68	77.1	75.6	75.6
weight	55.2	00.7	0								
	M	M	M	Μ	Μ	M	M	Μ	M	M	M
weight sex p-vol					M 96.33	M 96.69	M 98.4	M 99.72	M 109.47	M 118.41	M 118.76

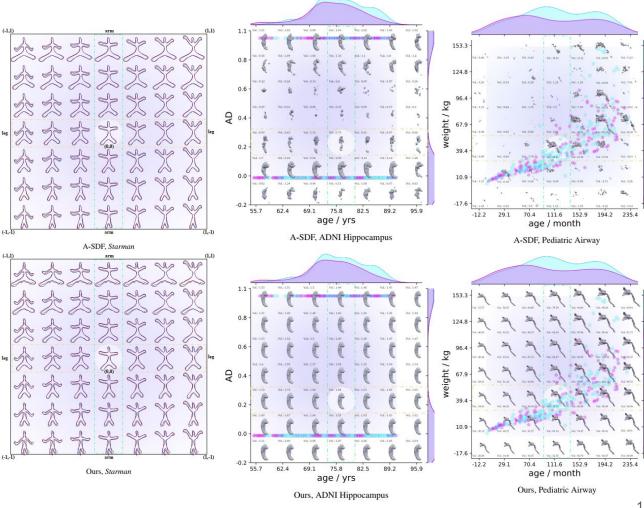



#### Results -Shape Evolution & Disentanglement In Template Space

Disentanglement




at CHAPEL HILL




**Results** -Shape Evolution & Disentanglement For a Specific Patient

Disentanglement



leg



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **NAISR**: A 3D Neural Additive Model for Interpretable Shape Representation

Yining Jiao^{1,,,} Carlton Zdanski¹, Julia Kimbell¹, Andrew Prince¹, Cameron Worden¹, Samuel Kirse², Christopher Rutter³, Benjamin Shields¹, William Dunn¹, Jisan Mahmud¹, Marc Niethammer^{1,,,} for the Alzheimer's Disease Neuroimaging Initiative

¹University of North Carolina at Chapel Hill, ²Wake Forest School of Medicine, ³The Ohio State University College of Medicine

🌸 First author 🌲 Corresponding author

Contact us: jyn@cs.unc.edu



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL





**Project Page**