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Node Classification
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MLP GNN
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GNN’s prediction:
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MLP’s prediction:

How confident is MLP:

Case 1: 
If the node’s self features are sufficient
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Mowst: Mixture of Weak & Strong Experts
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MLP’s prediction:

How confident is MLP:

Case 2: 
If the node’s self features are insufficient
• MLP is certain
• MLP is not certain
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• Mowst is at least as expressive as 
the MLP or GNN expert alone
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GNN’s prediction:
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Weak Expert
(MLP)

Strong Expert
(GNN)

Mowst: Mixture of Weak & Strong Experts

Target node:

MLP’s prediction:

How confident is MLP:

• Mowst is at least as expressive as 
the MLP or GNN expert alone

• Mowst-GCN is more expressive 
than the GCN expert alone

• The worst-case cost of Mowst-GCN 
is similar to that of a vanilla GCN
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More details in our paper
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Denoised Fine-tuning

Weak-strong vs. Strong-strongSpecialization via data splitting
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Future work
● More experts
● Other non-graph domains

19



UNIVERSITY of ROCHESTER

Future work
● More experts
● Other non-graph domains

20

Thank you!


