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Table 1: Mowst outperforms baselines under the same number of layers and hidden dimension. Values
with “t’, ‘27 and ‘77’ are from Hu et al. (2020), Lim et al. (2021), and Wang et al. (2023). For each
graph, we show the best and second best results, and absolute gains against the GNN counterparts
(e.g., Mowst (*)-GCN vs. GCN and GraphMoE-GCN). All results are averaged over 10 runs.

Flickr ogbn-products ogbn-arxiv Penn94 pokec twitch-gamer
MLP 46.93 +0.00 61.06" +0.08 55.50" +0.23  73.61% £0.40 62.37F +0.02  60.92% +0.07
GAT 52.47 +0.14 OOM 7158 +0.17  81.53% +0.55 71.77F £6.18  59.89% +4.12
GPR-GNN 53.23 +0.14 72.41 +0.04 71.10 +0.22  81.38% +0.16  78.83% +0.05  61.89% +0.29
AdaGCN 48.96 +0.06 69.06 +0.04 58.45 +0.50 7442 +0.58  55.92 +0.35 61.02 +0.14
GCN 53.86 +0.37  75.641 +0.21 71.74Y £0.29  82.17 +0.04  76.01 +0.49 62.42 +0.53
Mowst (*) -GCN 54.62 +0.23 76.49 +0.22 72.52 +0.07 83.19 +0.43 77.28 + 63.74 +0.23
(+0.76) (+0.85) (+0.64) (+1.02) (+0.29) (+0.83)
GIN 53.71 £0.35 - 69.39 +0.56  82.68 +0.32  53.37 +2.15 61.76 +0.60
Mowst (*)—GTN 55.48 +0.32 - 71.43 £0.26  84.56 +0.31  76.11 +0.39 64.32 +0.34
(+1.77) (+2.04) (+1.88) (+22.74) (+2.56)
GIN-skip 52.70 £0.00 = 71.28 +0.00 80.32 +£0.43 76.29 +0.51 64.27 +0.25
€y TN ese 53.19 £0.31 . 71.79 £0.23  81.20 £0.55  79.70 +0.23 64.91 +0.22
Mows L") ~GIN-slip (+0.49) (+0.51) (+0.88) (+3.41) (+0.64)
GraphSAGE 53.51 +0.05 78.50" +0.14 71.49t +0.2 76.75 £0.52  75.76 £0.( 61.99 +0.30
GraphMoE-SAGE 52. 16 0.13 77.79 +0.00 71.19 +0. m 77.04 £055  76.67 'o 63.42 +0.23
Mowst (*) ~SAGE 53.90 +£0.18 79.38 - 72.04 +£0.24 79.07 £0.43  77.84 £0.( 64.38 +0.14
(+0.39) (+0.88) (+0.55) (+2.03) (+1.33) (+1.05)
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More details in our paper

Specialization via data splitting Weak-strong vs. Strong-strong
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Future work

e More experts

e Other non

graph domains
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Future work

e More experts
e Other non-graph domains
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