

Mixture of Weak and Strong Experts on Graphs

Hanqing Zeng* Meta AI zengh@meta.com Hanjia Lyu* University of Rochester hlyu5@ur.rochester.edu Diyi Hu University of Southern California diyihu@usc.edu

Yinglong Xia Meta AI yxia@meta.com Jiebo Luo University of Rochester jluo@cs.rochester.edu

* Equal contribution.

Node Classification

Node Classification

Mowst: Mixture of Weak & Strong Experts

$$L_{\text{Howst}} = \frac{1}{|V|} \sum_{v \in V} (C(p_v) \cdot L(p_v, y_v) + (1 - C(p_v)) \cdot L(p'_v, y_v))$$
Target node: v
MLP's prediction: p_v GNN's prediction: p'_v
How confident is MLP: $C(p_v)$
Weak Expert
Weak Expert
(MLP)
Strong Expert
(GNN)

$$\left| \begin{array}{c} L_{\texttt{Mowst}} = & \frac{1}{\left| \mathcal{V} \right|} \sum_{v \in \mathcal{V}} \left(C\left(\boldsymbol{p}_{v} \right) \cdot L\left(\boldsymbol{p}_{v}, \boldsymbol{y}_{v} \right) + \left(1 - C\left(\boldsymbol{p}_{v} \right) \right) \cdot L\left(\boldsymbol{p}_{v}^{\prime}, \boldsymbol{y}_{v} \right) \right) \end{array} \right|$$

Case 1: If the node's self features are sufficient

$$L_{\texttt{Mowst}} = \frac{1}{\left|\mathcal{V}\right|} \sum_{v \in \mathcal{V}} \left(C\left(\boldsymbol{p}_{v}\right) \cdot L\left(\boldsymbol{p}_{v}, \boldsymbol{y}_{v}\right) + \left(1 - C\left(\boldsymbol{p}_{v}\right)\right) \cdot L\left(\boldsymbol{p}_{v}^{\prime}, \boldsymbol{y}_{v}\right) \right)$$

Case 2:

If the node's self features are insufficient

- MLP is certain
- MLP is not certain

$$L_{\texttt{Mowst}} = \frac{1}{\left|\mathcal{V}\right|} \sum_{v \in \mathcal{V}} \left(C\left(\boldsymbol{p}_{v}\right) \cdot L\left(\boldsymbol{p}_{v}, \boldsymbol{y}_{v}\right) + \left(1 - C\left(\boldsymbol{p}_{v}\right)\right) \cdot L\left(\boldsymbol{p}_{v}^{\prime}, \boldsymbol{y}_{v}\right) \right)$$

• Mowst is at least as expressive as the MLP or GNN expert alone

$$\left| \begin{array}{c} L_{\texttt{Mowst}} = & \frac{1}{\left|\mathcal{V}\right|} \sum_{v \in \mathcal{V}} \left(C\left(\boldsymbol{p}_{v}\right) \cdot L\left(\boldsymbol{p}_{v}, \boldsymbol{y}_{v}\right) + \left(1 - C\left(\boldsymbol{p}_{v}\right)\right) \cdot L\left(\boldsymbol{p}_{v}^{\prime}, \boldsymbol{y}_{v}\right) \right) \end{array} \right.$$

- Mowst is at least as expressive as the MLP or GNN expert alone
- Mowst-GCN is more expressive than the GCN expert alone

$$\left| \begin{array}{c} L_{\texttt{Mowst}} = & \frac{1}{\left|\mathcal{V}\right|} \sum_{v \in \mathcal{V}} \left(C\left(\boldsymbol{p}_{v}\right) \cdot L\left(\boldsymbol{p}_{v}, \boldsymbol{y}_{v}\right) + \left(1 - C\left(\boldsymbol{p}_{v}\right)\right) \cdot L\left(\boldsymbol{p}_{v}^{\prime}, \boldsymbol{y}_{v}\right) \right) \end{array} \right.$$

- Mowst is at least as expressive as the MLP or GNN expert alone
- Mowst-GCN is more expressive than the GCN expert alone
- The worst-case cost of Mowst-GCN is similar to that of a vanilla GCN

Table 1: Mowst outperforms baselines under the same number of layers and hidden dimension. Values with ' \dagger ', ' \ddagger ' and ' \dagger \dagger ' are from Hu et al. (2020), Lim et al. (2021), and Wang et al. (2023). For each graph, we show the **best** and <u>second best</u> results, and **absolute gains** against the GNN counterparts (*e.g.*, Mowst(*)-GCN *vs.* GCN and GraphMoE-GCN). All results are averaged over 10 runs.

	Flickr	ogbn-products	ogbn-arxiv	Penn94	pokec	twitch-gamer
MLP	$\textbf{46.93} \pm 0.00$	$61.06^\dagger \ \pm 0.08$	$55.50^{\dagger} \pm 0.23$	$73.61^{\ddagger} \pm 0.40$	$62.37^{\ddagger} \pm 0.02$	$60.92^\ddagger \pm 0.07$
GAT	$\textbf{52.47} \pm 0.14$	OOM	71.58 ± 0.17	$81.53^{\ddagger} \pm 0.55$	$71.77^{\ddagger} \pm 6.18$	$59.89^{\ddagger} \pm 4.12$
GPR-GNN	$\textbf{53.23} \pm 0.14$	$\textbf{72.41} \pm 0.04$	71.10 ± 0.22	$81.38^{\ddagger} \pm 0.16$	<u>78.83</u> [‡] ±0.05	$61.89^{\ddagger} \pm 0.29$
AdaGCN	48.96 ± 0.06	69.06 ± 0.04	$\textbf{58.45} \pm 0.50$	$\textbf{74.42} \pm 0.58$	55.92 ± 0.35	61.02 ± 0.14
GCN	53.86 ± 0.37	$75.64^{\dagger} \pm 0.21$	$71.74^{\dagger} \pm 0.29$	82.17 ± 0.04	$\textbf{76.01} \pm 0.49$	$\textbf{62.42} \pm 0.53$
Mowst(*)-GCN	54.62 ± 0.23	$\textbf{76.49} \pm 0.22$	72.52 ± 0.07	83.19 ± 0.43	$\textbf{77.28} \pm 0.08$	63.74 ± 0.23
	(+0.76)	(+0.85)	(+0.64)	(+1.02)	(+0.29)	(+0.83)
GIN	53.71 ± 0.35	-	69.39 ± 0.56	82.68 ± 0.32	53.37 ± 2.15	61.76 ± 0.60
Mowst(*)-GIN	$\textbf{55.48} \pm 0.32$	-	71.43 ± 0.26	84.56 ±0.31	$\textbf{76.11} \pm 0.39$	64.32 ± 0.34
	(+1.77)		(+2.04)	(+1.88)	(+22.74)	(+2.56)
GIN-skip	52.70 ± 0.00	-	$\textbf{71.28} \pm 0.00$	80.32 ± 0.43	$\textbf{76.29} \pm 0.51$	64.27 ± 0.25
Mowst(*)-GIN-skip	53.19 ± 0.31	-	$\textbf{71.79} \pm 0.23$	81.20 ± 0.55	79.70 ±0.23	64.91 ±0.22
	(+0.49)		(+0.51)	(+0.88)	(+3.41)	(+0.64)
GraphSAGE	53.51 ± 0.05	<u>78.50</u> [†] ±0.14	$71.49^{\dagger} \pm 0.27$	$\textbf{76.75} \pm 0.52$	$\textbf{75.76} \pm 0.04$	61.99 ± 0.30
GraphMoE-SAGE	52.16 ± 0.13	$\textbf{77.79} \pm 0.00$	71.19 ± 0.15	$\textbf{77.04} \pm 0.55$	76.67 ± 0.08	63.42 ± 0.23
Mowst(*)-SAGE	53.90 ± 0.18	79.38 ± 0.44	<u>72.04</u> ±0.24	79.07 ± 0.43	$\textbf{77.84} \pm 0.04$	<u>64.38</u> ±0.14
	(+0.39)	(+0.88)	(+0.55)	(+2.03)	(+1.33)	(+1.05)

More details in our paper

Specialization via data splitting

Weak-strong vs. Strong-strong

Denoised Fine-tuning

Future work

- More experts
- Other non-graph domains

Future work

- More experts
- Other non-graph domains

