

MVSFormer++: Revealing the Devil in TransFormer's Details for Multi-View Stereo

Chenjie Cao,Xinlin RenYanwei FuFudan University{cjcao20, xlren20,yanweifu}@fudan.edu.cn

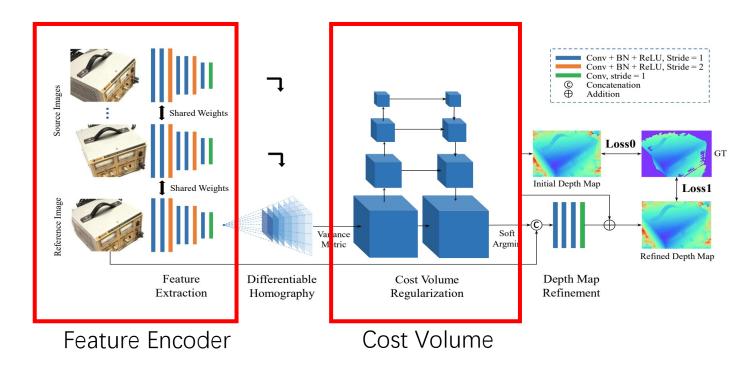
Project Page: https://github.com/maybeLx/MVSFormerPlusPlus

Motivation

Existing approaches have not thoroughly investigated the profound influence of **transformers** on different MVS modules.

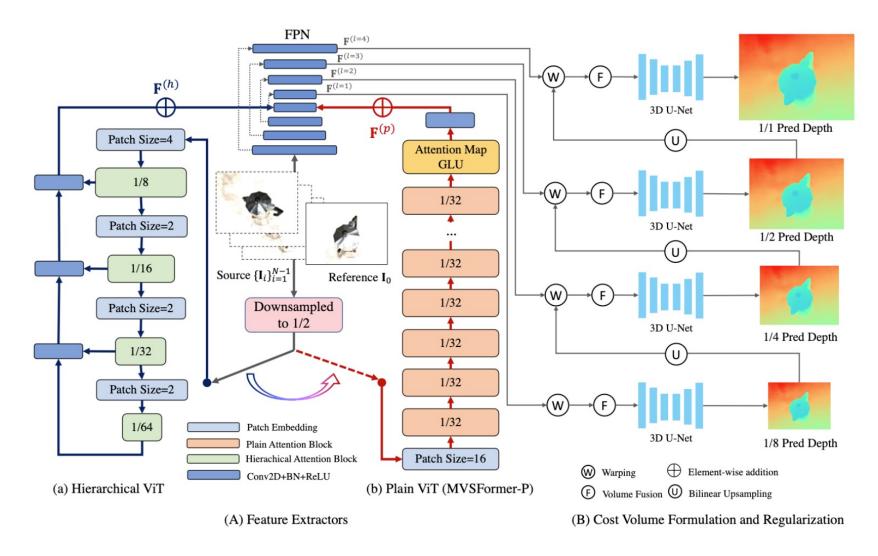
- Investigate tailored attention mechanisms for different MVS modules.
- Incorporating cross-view information into Pre-trained ViTs
- Enhancing Transformer's Length Extrapolation Capability in MVS

Mainstream Pipeline



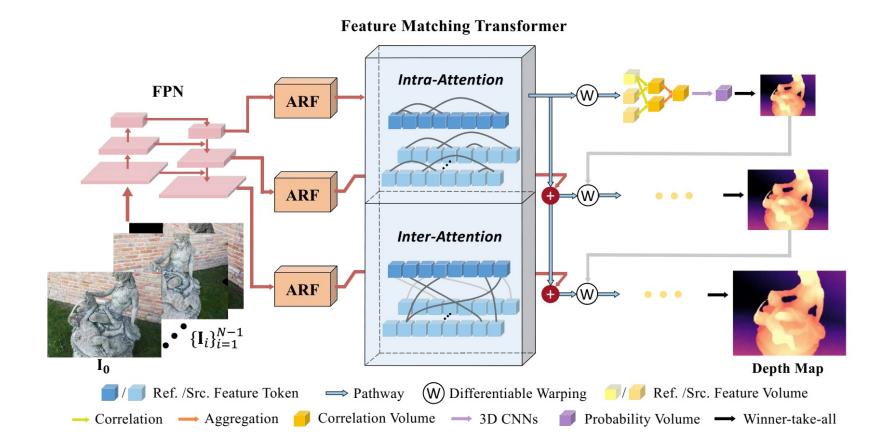
Related Work

Transformer in feature encoder, using pre-trained ViT prior for better feature representation



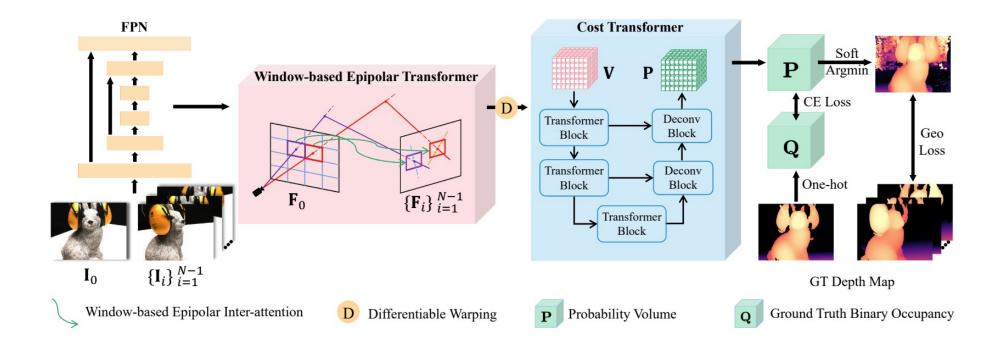
Cao C, Ren X, Fu Y. Mvsformer: Multi-view stereo by learning robust image features and temperature-based depth[J]. TMLR, 2023.

Transformer in feature encoder, adding cross view information to aggregate features



Ding Y, Yuan W, Zhu Q, et al. Transmvsnet: Global context-aware multi-view stereo network with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022

Transformer in cost volume



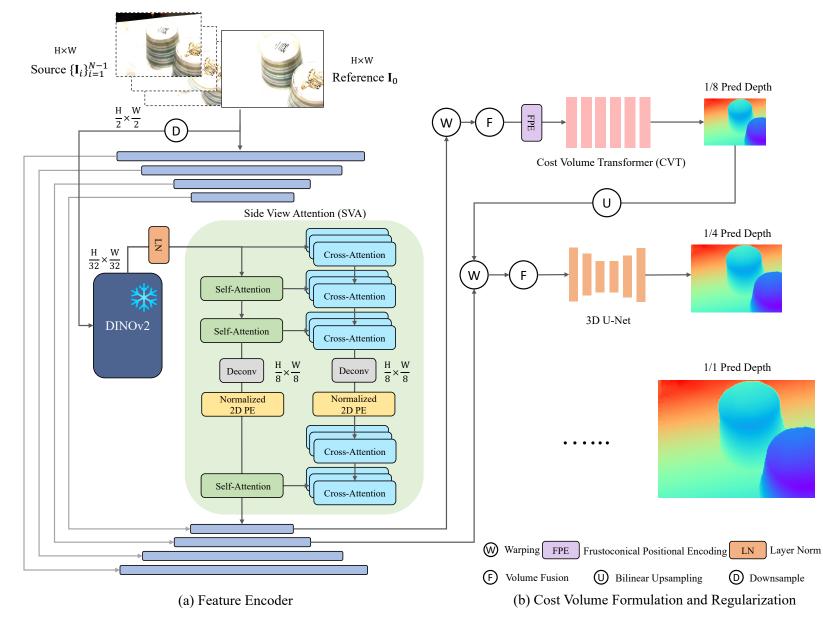
Liao J, Ding Y, Shavit Y, et al. Wt-mvsnet: window-based transformers for multi-view stereo[J]. Advances in Neural Information Processing Systems, 2022,

Comparsion between other transformer-based MVS methods

Table 1: Comparison of transformer-based MVS methods, including TransMVSNet (Ding et al., 2022), WT-MVSNet (Liao et al., 2022), CostFormer (Chen et al., 2023), and MVSFormer (Cao et al., 2022). MVSFormer++ surpasses other competitors with a meticulously designed transformer architecture, including attention with global receptive fields, transformer learning for both feature encoder and cost volume, cross-view attention, adaptive scaling for different sequence lengths, and specifically proposed positional encoding for MVS.

Methods	Attention	Transformer	rs work in	Cross-view	Adaptive scaling	Positional Encoding (PE)			
	global/window	Feature encoder	Cost volume	Closs-view	Adaptive scaling	Abs./Rel.	Normalized	3D-PE	
TransMVSNet	global	\checkmark	×	\checkmark	×	absolute	Х	×	
WT-MVSNet	window	\checkmark	\checkmark	\checkmark	×	relative	×	×	
CostFormer	window	×	\checkmark	×	×	relative	×	×	
MVSFormer	global	\checkmark	×	×	×	absolute	\checkmark	×	
MVSFormer++	global	\checkmark	\checkmark	\checkmark	\checkmark	absolute	\checkmark	\checkmark	
MVSFormer++	global	\checkmark	\checkmark	✓	\checkmark	absolute	\checkmark	_ ✓	

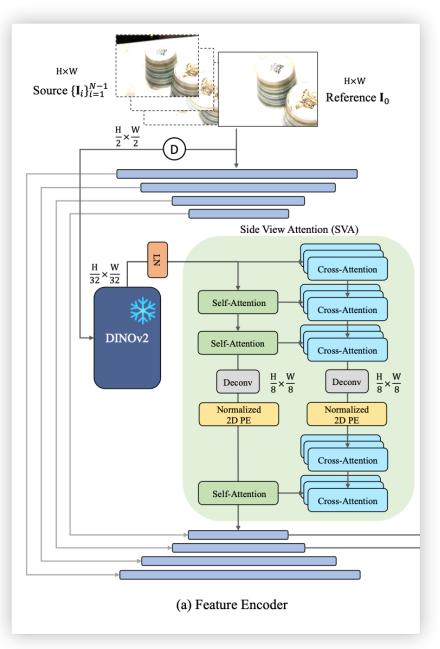
Overview of MVSFormer++.



(A)Feature extraction enhanced with SVA module, normalized 2D-PE, and Norm&ALS.

(B) Multi-scale cost volume formation and regularization, where CVT is strengthed by FPE and AAS resulting in solid depth estimation.

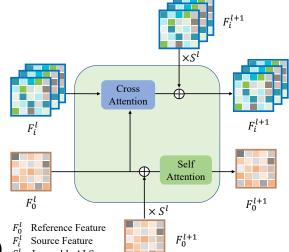
Transformer for Feature Encoder



• Side View Attention (SVA)

1. Capture extensive global contextual information across different view

2. Independently trained without any gradients passing from frozen DINOv2



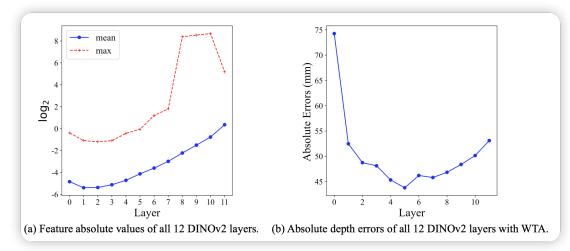
• Normalized 2D Positional Encoding (PE). S^{i} Source Feature Learnable ALS

Linear normalizing maximum values of height and width position to (128,128)

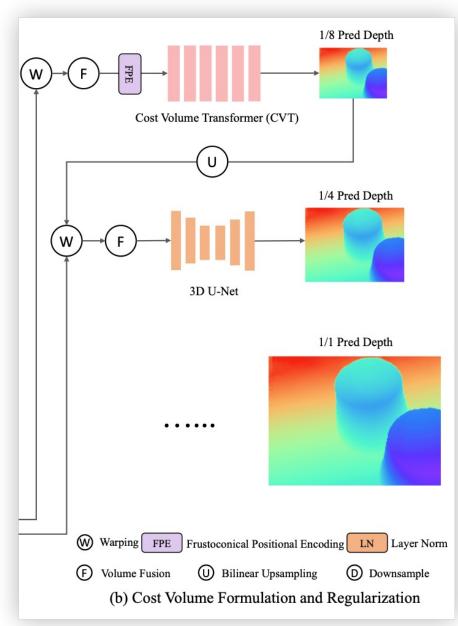
• Normalization and Adaptive Layer Scaling (Norm&ALS)

1. Normalize all the DINOv2 features

2. Adaptively adjust the significance of features from unstable frozen DINOv2 layers.



Transformer for Cost Volume Regularization



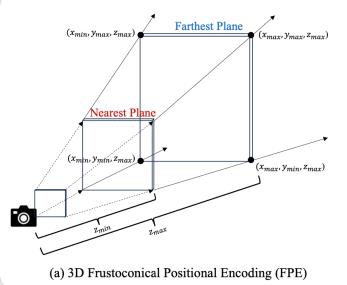
• Cost Volume Transformer (CVT)

Pure transformer based on vanilla attention (FlashAttention). DHW can be seen as the global sequence learned by transformer blocks.

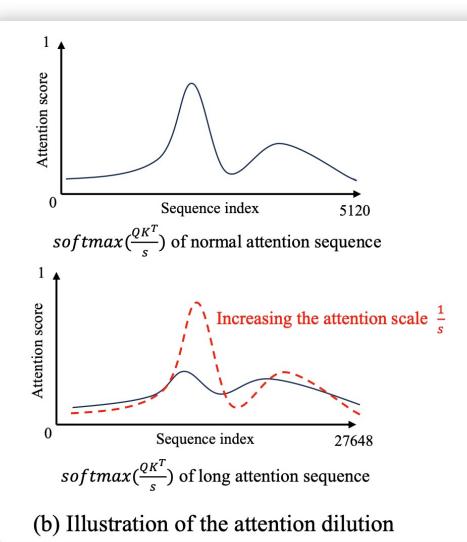
Frustoconical Positional Encoding (FPE)

- Normalize the 3D position $P \in \mathbb{R}^{3 \times DHW}$ of the cost volume into the range $[0, 1]^3$
- Separately apply 1D sinusoidal PE along the x, y, z dimensions, then concatenate three PE into FPE $(3C \times DHW)$ and project to $C \times DHW$

Crucial for improving CVT's depth estimation.



Transformer for Cost Volume Regularization



The attention score would be **diluted** when the sequence **increases**, making it challenging to correctly focus on related target values.

• Adaptive Attention Scaling (AAS)

Insight: Sequential lengths of cost volume of training and testing image are largely different. 6k vs 30k

we should keep the invariant entropy for the attention score :

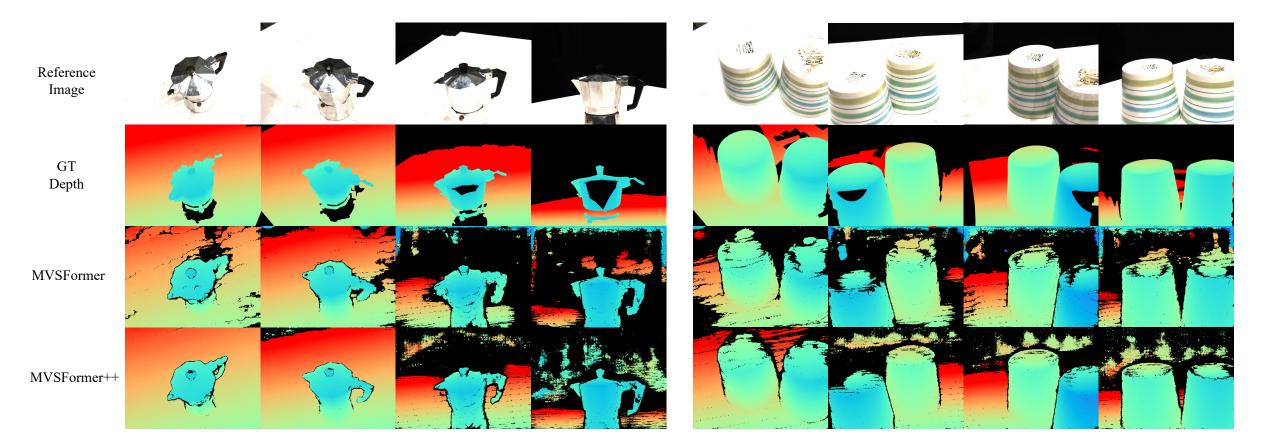
$$\mathcal{H}_{i} = -\sum_{j}^{n} a_{i,j} \log a_{i,j}, \qquad a_{i,j} = \frac{e^{\lambda q_{i} \cdot k_{j}}}{\sum_{j}^{n} e^{\lambda q_{i} \cdot k_{j}}}$$

To make \mathcal{H}_i independent of sequence length n, let $\lambda = \frac{\kappa \log n}{d}$ We formulate the attention as:

Attention(**Q**, **K**, **V**) = Softmax
$$\left(\frac{\kappa \log n}{d} \mathbf{Q} \mathbf{K}^{\mathrm{T}}\right) \mathbf{V}$$

We empirically set $\kappa = \frac{\sqrt{d}}{\log n}$, \overline{n} is the mean sequential length during the multi-scale training.

MVSFormer++ vs MVSFormer

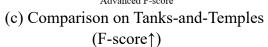


MVSFormer++ vs MVSFormer

MVSFormer

MVSFormer++

(a) Point cloud results between MVSFormer and MVSFormer++ on DTU and Tanks-and-Temples.



Experiments

DTU dataset

Methods	Accuracy↓	Completeness \downarrow	Overall
Gipuma (Galliani et al., 2015a)	0.283	0.873	0.578
COLMAP (Schönberger et al., 2016)	0.400	0.664	0.532
CasMVSNet (Gu et al., 2020)	0.325	0.385	0.355
AA-RMVSNet (Wei et al., 2021)	0.376	0.339	0.357
UniMVSNet (Peng et al., 2022)	0.352	0.278	0.315
TransMVSNet (Ding et al., 2022)	0.321	0.289	0.305
WT-MVSNet (Liao et al., 2022)	0.309	0.281	0.295
CostFormer (Chen et al., 2023)	0.301	0.322	0.312
RA-MVSNet (Zhang et al., 2023b)	0.326	0.268	0.297
GeoMVSNet (Zhang et al., 2023c)	0.331	0.259	0.295
MVSFormer (Cao et al., 2022)	0.327	0.251	0.289
MVSFormer++ (ours)	0.3090	0.2521	0.2805

Table 2: Ouantitative point cloud results (mm) on DTU (lower is better). The best results are in bold. an

Experiments

Tanks-and-Temples dataset

Table 3: Quantitative results of F-score on Tanks-and-Temples. A higher F-score means a better reconstruction quality. The best results are in bold, while the second ones are underlined.

Methods	Intermediate							Advanced								
	Mean	Fam.	Fra.	Hor.	Lig.	M60	Pan.	Pla.	Tra.	Mean	Aud.	Bal.	Cou.	Mus.	Pal.	Tem.
COLMAP (Schönberger et al., 2016)	42.14	50.41	22.25	26.63	56.43	44.83	46.97	48.53	42.04	27.24	16.02	25.23	34.70	41.51	18.05	27.94
CasMVSNet (Gu et al., 2020)	56.84	76.37	58.45	46.26	55.81	56.11	54.06	58.18	49.51	31.12	19.81	38.46	29.10	43.87	27.36	28.11
CostFormer (Chen et al., 2023)	64.51	81.31	65.65	55.57	63.46	<u>66.24</u>	65.39	61.27	57.30	39.43	29.18	45.21	39.88	53.38	34.07	34.87
TransMVSNet (Ding et al., 2022)	63.52	80.92	65.83	56.94	62.54	63.06	60.00	60.20	58.67	37.00	24.84	44.59	34.77	46.49	34.69	36.62
WT-MVSNet (Liao et al., 2022)	65.34	81.87	67.33	57.76	64.77	65.68	64.61	62.35	58.38	39.91	29.20	44.48	39.55	53.49	34.57	38.15
RA-MVSNet (Zhang et al., 2023b)	65.72	82.44	66.61	58.40	64.78	67.14	<u>65.60</u>	62.74	58.08	39.93	29.17	46.05	40.23	53.22	34.62	36.30
D-MVSNet (Ye et al., 2023)	64.66	81.27	67.54	59.10	63.12	64.64	64.80	59.83	56.97	41.17	30.08	46.10	40.65	<u>53.53</u>	35.08	41.60
MVSFormer (Cao et al., 2022)	66.37	82.06	69.34	<u>60.49</u>	<u>68.61</u>	65.67	64.08	61.23	<u>59.53</u>	40.87	28.22	46.75	39.30	52.88	35.16	42.95
MVSFormer++ (ours)	67.03	82.87	<u>68.90</u>	64.21	68.65	65.00	66.43	60.07	60.12	41.70	30.39	45.85	39.35	53.62	35.34	45.66

Ablation Study

Attention in Cost Volume Regularization

Cost volume attention	$e_2\downarrow$	$e_4\downarrow$	$e_8\downarrow$	Overall↓
Shifted Window	15.03	9.93	6.90	0.2862
Linear	15.94	10.64	7.80	0.2980
Vanilla	13.89	8.91	6.34	0.2871
Vanilla + AAS	13.76	8.71	6.17	0.2847

- Linear attention suffers from terrible performance, primarily relying on group-wise feature dot product and variance, which lacks informative representations
- Capturing global contextual information in cost volume regularization is important. (Vanilla+AAS vs Shifted Window attention)

Feature encoder attention Overall↓ $e_2\downarrow$ $e_4\downarrow$ $e_8\downarrow$ Shifted Window 12.80 8.05 5.64 0.2862 13.04 8.43 6.12 0.2854 Top-K Vanilla 12.65 7.88 5.60 0.2835 Vanilla + AAS 0.2824 12.63 7.88 5.60 13.03 8.29 5.35 0.2805 Linear

- linear attention outperforms other attention mechanisms, which naturally robust for highresolution images without attention dilution
- Top-K and shifted window-based attention lacking global receptive field fail to achieve proper results

Attention in Feature Encoder

Effect of Proposed Components based on other Baselines

Table 13: Quantitative ablation studies of CasMVSNet (Gu et al., 2020) and MVSFormer + DI-NOv1 (Caron et al., 2021) (MVSFormer-P) based on our proposed components including CVT and SVA. * indicates that CasMVSNet is re-trained with the 4-stage depth hypothesis setting (32-16-8-4) and cross-entropy loss as MVSFormer (Cao et al., 2022) and MVSFormer++.

Methods	$e_2\downarrow$	$e_4\downarrow$	$e_8\downarrow$	Accuracy↓	Completeness↓	Overall↓
CasMVSNet	30.21	24.63	21.14	0.325	0.385	0.355
CasMVSNet*	23.15	18.68	15.35	0.353	0.286	0.320
CasMVSNet* + CVT	15.70	10.13	7.14	0.332	0.278	0.305
MVSFormer-P	17.18	11.96	8.53	0.327	0.265	0.296
MVSFormer-P + CVT	14.25	9.13	6.51	0.327	0.261	0.294
MVSFormer-P + CVT + SVA	13.55	8.67	6.31	0.322	0.254	0.288

CVT demonstrates substantial improvements for both CasMVSNet* and MVSFormer-P