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MERT: one lightweight model for
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1. Motivation

- Self-supervised learning is promising for training generalisable

models with large-scale data for many domains yet not for
music.

-  We propose MERT, an open-source model incorporating

acoustic and musical teacher models to provide pseudo labels

-  MERT is scaled from 95M to 330M parameters and achieve

SOTA music understanding performances while remaining
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Dataset MTT GS GTZAN GTZAN EMO Nsynth VocalSet  VocalSet
Task Tagging Key Genre Rhythm Emotion Instrument Pitch Tech Singer
Metrics ROC AP AccRefined Acc F1beat R2V R2A Acc Acc Acc Acc
MusiCNN [41] 90.6* 38.3* 12.8% 79.0% 46.6* 70.3* 72.6 64.1 70.3 57.0
CLMR [48] 89.4%* 36.1%* 14.9% 68.6* 45.8% 67.8% 67.9 47.0 58.1 49.9
Jukebox-5B [15; 57] 91.5% 41.4* 66.7* 79.7* 61.7* 72.1% 70.4 91.6 76.7 82.6
MULE [36] | 91.4% 40.4% 66.7* 73.5% - 57.7% 70.0% 74.0% 89.2% 75.5 87.5
HuBERT-base™"*"* [25] 90.2 37.7 14.7 70.0 88.6 42.1 66.5 69.3 77.4 65.9 75.3
data2vec-base™ [2] 90.0 36.2 50.6 74.1 68.2 52.1 71.0 69.4 93.1 71.1 81.4
MERT-95MK-means 90.6 38.4 65.0 78.6 88.3 52.9 69.9 71.3 92.3 74.6 77.2
MERT-95M-publjc<-means 90.7 38.4 67.3 72.8 88.1 59.7 72.5 70.4 92.3 75.6 78.0
MERT-95MRVQ-VAE 91.0 39.3 63.5 78.6 88.3 60.0 76.4 70.7 92.6 74.2 83.7
MERT-330MRVQ-VAE 91.3 40.2 65.6 79.3 87.9 61.2 74.7 72.6 94.4 76.9 87.1
(Previous) SOTA 92.0[26] 41.4[15] 743[30] 83.5[36] 80.6[24] 61.7  72.1[15] 78.2 [53] 89.2 [36] 65.6[55] 80.3[39]
Dataset MTG MTG MTG MTG MUSDB

Task Instrument MoodTheme Genre Top50 Source Seperation Avg.
Metrics ROC AP ROC AP ROC AP ROC AP SDRYds  gpRYums  gpRbas  gpROther
MusiCNN [41] 74.0 17.2 74.0 12.6 86.0 17.5 82.0 27.5

CLMR [48] 73.5 17.0 73.5 12.6 84.6 16.2 81.3 26.4 - - - -

Jukebox-5B [15; 57] - - - - - - - - 5.1% 4.9% 4.1% 2. 7%

MULE [36] | 76.6 19.2 78.0 15.4 88.0 20.4 83.7 30.6 - - - - -
HuBERT-base™"* [25] 75.5 17.8 76.0 13.9 86.5 18.0 82.4 28.1 4.7 3.7 1.8 2.1 55.8
data2vec-base™ " [2] 76.1 19.2 76.7 14.3 87.1 18.8 83.0 29.2 5.5 5.5 4.1 3.0 59.9
MERT-95MK-means 77.2 19.6 75.9 13.7 87.0 18.6 82.8 294 5.6 5.6 4.0 3.0 62.9
MERT-95M-public®*™*  77.5 19.6 76.2 13.3 87.2 18.8 83.0 28.9 5.5 5.5 3.7 3.0 63.0
MERT-95MRVQ-VAE 77.5 19.4 76.4 13.4 87.1 18.8 83.0 28.9 55 5.5 3.8 3.1 63.7
MERT-330MRVQ-VAE 78.1 19.8 76.5 14.0 86.7 18.6 83.4 29.9 5.3 5.6 3.6 3.0 64.7
(Previous) SOTA 788 20.2[1] 786 16.1[36] 87.7 203[1] 843  32.1[36] 9.3 10.8 10.4 6.4 [44] 645 ,
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Table |: Experimental Performances of MERT and Baselines on 14 Downstream Tasks.
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Figure 2: lllustration of the MERT Pre-training Framework.

2. Methodology

We explore an optimal combination of the teacher models, which
outperforms conventional speech and audio approaches in terms of
performance (Fig. 2).

The combination used for pre-training includes an acoustic teacher based
on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and
a musical teacher based on the Constant-Q Transform (CQT).

We also introduce an in-batch noise mixture augmentation to enhance the
representation robustness.

The CQT Musical Loss is effective.
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- We explore various settings to overcome the instability in acoustic
language model pre-training, which allows MERT to scale from 95M to

330M parameters (see Fig. 3).
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Figure 3: The Gradient Norm and MLM Loss of Different Pre-

training Setting.

4. Results

* As suggested by the average scores in Table 1, MERT-330M

outperforms the combination of the previous SOTAs and

becomes new SOTA on 4 metrics, while the smaller MERT-

95Ms still have close performance.

* Generally, MERT models perform well on tasks focusing on
local-level musical information such as beat, pitch and local

timbre such as singer information, and remain competitive on
the rest of tasks such as music tagging, key detection, and
genre classification, which require more global-level
information.

 MERT series models achieve SOTA or comparable performance
with only 1.9% (95M) and 6.6% (330M) parameters compared
to the SOTA self-supervised baseline Jukebox-5B.

* Even with probing evaluation, most models could not be
trained on sequence labelling tasks with affordable
computational costs except for MERT-like architectures.
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