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Background 

• Wide network (having more channel) yield good accuracy 

• However, It consumes more FLOPS

Accuracy: ⤵ 
FLOPS:  Hight 

Accuracy: ⤴ 
FLOPS:  Hight 



Structured Activation Sparsification

© DENSO IT LABORATORY,INC. All Rights Reserved.

Research question

• Can we utilize the sparsity in activation? 

• Sparsity induced by activation function (e.g., ReLU) is input dependent and 
unstructured -> Hard to utilize on vector process such as GPU 

Inactivated neuron 
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Core Idea: Structured Weight by Projection

• Realize wide network with structurally sparse activation by implicit projection
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GPU compatible

• Increase wide for without increasing FLOP on commercial GPU 

• Utilize SparseTensorCore developed for sparse-weight
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Sparse projection mechanism

• Input-dependent implicit sparse projection 

• We do not actually make sparse activation by directly computing the index for nonzero
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Is SAS better than SWS

• Both SAS and SWS increase network width while keeping the same FLOPS 

• Which is better, given the same FLOPS?
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SAS: Structured Activation Sparsification (Ours) SWS: Structured Weight Sparsification (Nvidia) 

Note: SAS consume  memory for weight than SWSM ×
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Preliminary Experiment: Expressiveness by Trajectory Length
Trajectory Length: Longer length (complicated shape) indicates more expressiveness 


“On the Expressive Power of Deep Neural Networks” https://proceedings.mlr.press/v70/raghu17a/raghu17a.pdf　ICML2017

(x, y) (x, y)

GOOD

BAD

Structured Weight Sparsification (1:2 SWS, NVIDIA) Structured Activation Sparsification (1-2 SAS, Ours)

https://proceedings.mlr.press/v70/raghu17a/raghu17a.pdf
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Trajectory Length: Evaluation result
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Result on CiFAR10/100

•Increasing sparsity (M) 
→ Better accuracy without increasing FLOPS  

•Better than SWS for the FLOPS (and sparsity)
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SAS Summary

• We explore the utilization of projected structured sparsity in activation 

• Increasing the width of NN by sparse projection increases capacity  
while keeping the same FLOPS 

• Better than SWS in terms of FLOPS/accuracy tradeoff 
(SAS consumes more memory for weight)  

• Future work 

• Develop library to build SAS neural network 

• Combination wit quantization

SAS: Structured Activation Sparsification (Ours) 
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