

STRUCTURED ACTIVATION SPARSIFICATIO GPU COMPATIBLE DNN ACCELERATION BY UTILIZING SPARSITY IN ACTIVATION

Yusuke Sekikawa, DENSO IT Lab. Inc.,

- Wide network (having more channel) yield good accuracy
- However, It consumes more FLOPS

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

Research question

- Can we utilize the sparsity in activation?
 - Sparsity induced by activation function (e.g., ReLU) is input dependent and unstructured -> Hard to utilize on vector process such as GPU

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

Inactivated neuron

Structured Activation Sparsification

Realize wide network with structurally sparse activation by implicit projection

Dense Matrix Multiplication

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

SAS Matrix Multiplication (1:4)

GPU compatible

DENSO IT LAB

• Increase wide for $M \times$ without increasing FLOP on commercial GPU

Utilize SparseTensorCore developed for sparse-weight

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

Sparse projection mechanism

- Input-dependent implicit sparse projection

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

• We do not actually make sparse activation by directly computing the index for nonzero

Is SAS better than SWS

Both SAS and SWS increase network width while keeping the same FLOPS

Which is better, given the same FLOPS?

SAS: Structured Activation Sparsification (Ours)

DENSO

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

Note: SAS consume $M \times$ memory for weight than SWS

Preliminary Experiment: Expressiveness by Trajectory Length

Trajectory Length: Longer length (complicated shape) indicates more expressiveness "On the Expressive Power of Deep Neural Networks" https://proceedings.mlr.press/v70/raghu17a/raghu17a.pdf

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

ICML2017

Structured Activation Sparsification (1-2 SAS, Ours)

Trajectory Length: Evaluation result

Result on CIFAR10/100

DENSO IT LAB

(e) Test summary

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

CIFAR100

 Increasing sparsity (M) → Better accuracy without increasing FLOPS Better than SWS for the FLOPS (and sparsity) Note: SAS consume $M \times$ memory for weight than SWS

SAS Summary

• We explore the utilization of projected structured sparsity in activation

- Increasing the width of NN by sparse projection increases capacity while keeping the same FLOPS
- Better than SWS in terms of FLOPS/accuracy tradeoff (SAS consumes more memory for weight)
- Future work
 - Develop library to build SAS neural network
 - Combination wit quantization

Structured Activation Sparsification © DENSO IT LABORATORY, INC. All Rights Reserved.

SAS: Structured Activation Sparsification (Ours)

SWS: Structured Weight Sparsification

n	10	ik	C	26	Э	S
	1					
	ł	Н	Н	Н		
	ļ	Н	Н	H		
	ļ	Н	Ц	H		

al	tic	n
٦		
4		

