Xformer: Hybrid X-Shaped Transformer for Image Denoising

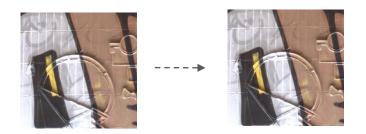
Jiale Zhang¹, Yulun Zhang¹^{*}, Jinjin Gu^{2,3}, Jiahua Dong⁴, Linghe Kong¹^{*}, Xiaokang Yang¹

¹Shanghai Jiao Tong University, ²Shanghai AI Laboratory, ³University of Sydney, ⁴Shenyang Institute of Automation, Chinese Academy of Sciences

Introduction & Background

• Image Denoising

Synthetic Image Denoising



Real-world Image Denoising

- CNN-based networks
 - DnCNN, RNAN, RDN, DRUNet
- Transformer-based networks
 - SwinIR, IPT, Uformer, Restormer

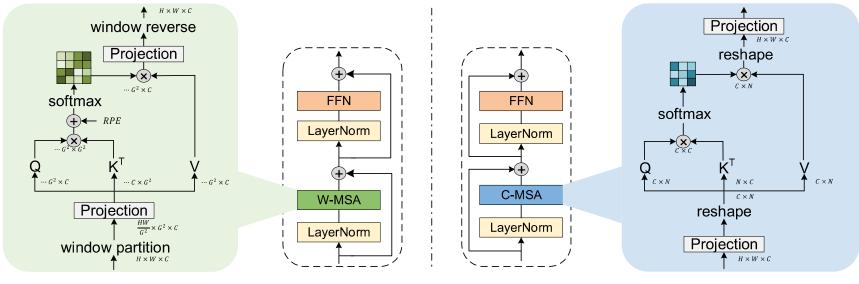
Efficient Self-attention Mechanism

- Spatial-wise Window-based Self-attention
 - Representative work Swin Transformer
- Channel-wise Cross-covariance Self-attention
 - Representative work XCiT

Analyses

- Spatial-wise Window-based Self-attention
 - Tokens are defined in spatial dimension.
 - Fine-grained interactions across local patches.
- Channel-wise Cross-covariance Self-attention
 - Tokens are defined in channel dimension
 - Direct interactions across global context patches.

Efficient Self-attention Mechanism



(a) STB

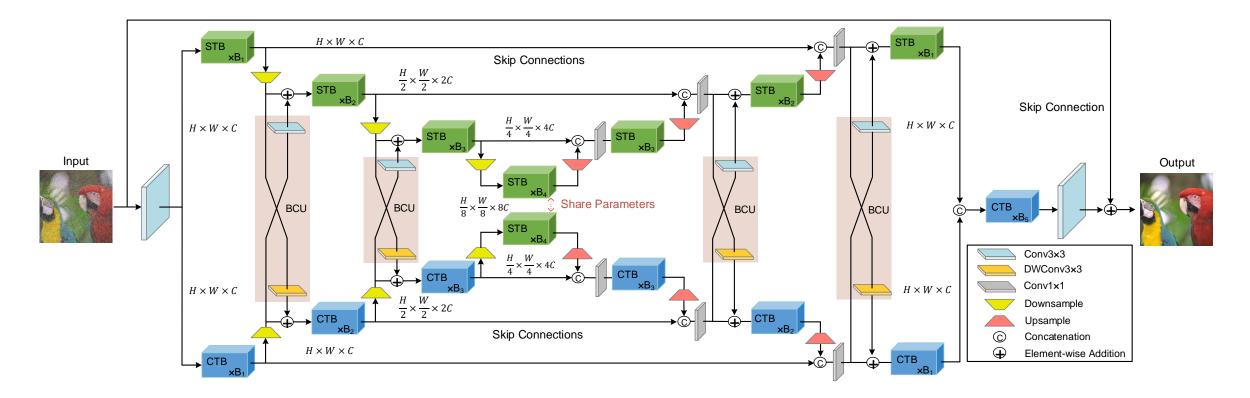
• Spatial-wise Transformer Block —capture patch-level information • Channel-wise Transformer Block —capture channel-level information

How to adopt them together?

(b) CTB

Gaps exist between these two types of representation learning.

Proposed Method - Xformer



- We propose a concurrent structure network for image denoising.
- The Bidirectional Connection Unit (BCU) bridges the two branches.

Spatial-wise Branch

- W-MSA: window-based multi-head self-attention
 - Q,K,V generated by three linear layers
- FFN: basic multi-layer perception (MLP)

Channel-wise Branch

- C-MSA: channel-wise multi-head self-attention
 - Q,K,V generated by 3×3 depth-wise convolution following 1×1 Conv
- FFN: gating mechanism with depth-wise convolutions^[1]

Ablation Study

Method	All STB	All CTB	STB+CTB
Params (M)	26.03	28.81	25.23
FLOPs (G)	38.1	42.3	42.2
PSNR (dB)	29.87	29.67	29.94
SSIM	0.8851	0.8830	0.8865

(a) Ablation study of Transformer blocks.

Conclusion: The joint usage of STB and CTB is necessary.

Method	w/o Shift	w/ Shift
Params (M)	25.23	25.23
FLOPs (G)	42.2	42.2
PSNR (dB)	29.88	29.94
SSIM	0.8852	0.8865

(c) Whether to use shift.

Conclusion: The shift operation can bring performance improvement.

Method	w/o BCU	BCU-1	BCU-2	Complete BCU
Params (M)	24.70	24.71	25.22	25.23
FLOPs (G)	40.9	40.9	42.2	42.2
PSNR (dB)	29.82	29.84	29.92	29.94
SSIM	0.8842	0.8848	0.8859	0.8865

(b) Ablation study of BCU settings.

Conclusion: The BCU bridges the network in a interactive manner and greatly enhances the performance.

ID	STB	CTB	BCU	Structure	Params (M)	FLOPs (G)	PSNR (dB)	SSIM
1	✓			single-branch	26.48	40.6	29.84	0.8853
2		\checkmark		single-branch	26.11	38.7	29.68	0.8829
3	\checkmark	\checkmark		two-branches	24.70	40.9	29.82	0.8842
4	\checkmark	\checkmark	\checkmark	two-branches	25.23	42.2	29.94	0.8865

(d) Ablation study of designed models with different branches.

Conclusion: The direct connection of dual branches brings limited performance. Equipped with BCU, the performance is greatly enhanced. Therefore, the effective information is very important.

Experiment

50

25.95

26.26

26.22

26.50

27.49

27.42

27.65 27.40

• Gaussian Image Denoising

Dataset	σ	BM3D	DnCNN	IRCNN	FFDNet	RNAN	RDN	DRUNet	P3AN	IPT	SwinIR	Restormer	Xformer (ours)	
CBSD68	15 25 50	33.5230.7127.38	33.90 31.24 27.95	33.86 31.16 27.86	33.87 31.21 27.96		<u>-</u> 28.31	34.30 31.69 28.51	28.37	- 28.39	$\frac{34.42}{31.78}\\28.56$	$ 34.40 \\ \underline{31.79} \\ \underline{28.60} $	34.43 31.82 28.63	
Kodak24	15 25 50	34.2832.1528.46	34.60 32.14 28.95	34.69 32.18 28.93	34.63 32.13 28.98	<u>-</u> 29.58	- 29.66	35.31 32.89 29.86	29.69	- 29.64	35.34 32.89 29.79	* <u>35.35</u> * <u>32.93</u> * <u>29.87</u>	35.39 32.99 29.94	-
McMaster	15 25 50	34.06 31.66 28.51	33.45 31.52 28.62	34.58 32.18 28.91	34.66 32.35 29.18	- 29.72	- - -	35.40 33.14 30.08	- - -	- 29.98	35.61 33.20 30.22	$\frac{35.61}{33.34}\\ \underline{30.30}$	35.68 33.44 30.38	-
Urban100	15 25 50	33.93 31.36 27.93	32.98 30.81 27.59	33.78 31.20 27.70	33.83 31.40 28.05	- 29.08	- 29.38	34.81 32.60 29.61	- 29.51	- 	35.13 32.90 29.82	$\frac{35.13}{32.96}\\ \underline{30.02}$	35.29 33.21 30.36	-
Dataset	σ	BM3I	D DnCN	IN IRCI	NN FFC	Net N	LRN I	MWCNN	I RNA	N RE	DN DRI	UNet Swin	IR Restormer	Xformer (ours)
Set12	15 25 50	32.37 29.97 26.72	30.44	4 30.3	37 30	43 30	3.16 0.80 7.64	33.15 30.79 27.74	- 27.7	0 27.	- 30	.2533.3.9431.0.9027.9	31.08	33.46 31.16 28.10
BSD68	15 25 50	31.08 28.57 25.60	29.2	3 29.1	15 29	19 2	1.88 9.41 6.47	31.86 29.41 26.53	- 	8 26.	- 29	.91 <u>31.9</u> .48 29.5 .59 26.5	<u>50</u> <u>29.52</u>	31.98 29.55 26.65
Urban100	15 25	32.35					3.45 0.94	33.17 30.66	-	-		.44 33.7 .11 31.3		33.98 31.78

27.98

27.96

28.29

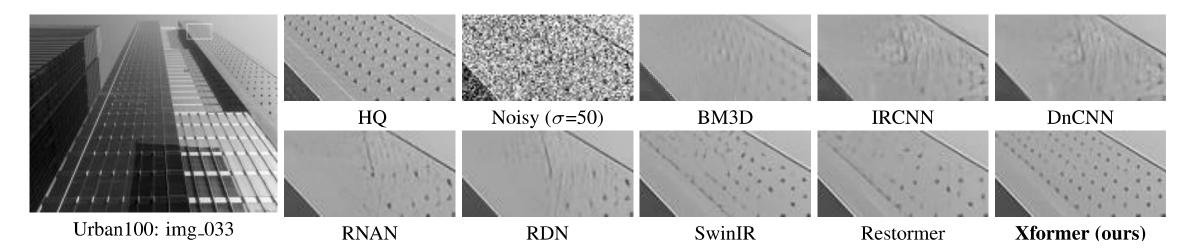
28.71

Experiment

• Real Image Denoising

Dataset	Method	BM3D	DnCNN	CBDNet	RIDNet	AINDNet	VDN	SADNet	DANet	CycleISP	MIRNet	DeamNet	DAGL	MAXIM	Uformer	Restormer	Xformer
SIDD	PSNR SSIM	25.65 0.685	23.66 0.583	30.78 0.801	38.71 0.951	39.08 0.954	39.28 0.956	39.46 0.957	39.47 0.957	39.52 0.957	39.72 0.959	39.47 0.957	38.94 0.953	39.96 0.960	39.89 0.960	40.02 <u>0.960</u>	<u>39.98</u> 0.960
DND	PSNR SSIM	34.51 0.851	32.43 0.790	38.06 0.942	39.26 0.953	39.37 0.951	39.38 0.952	39.59 0.952	39.58 0.955	39.56 0.956	39.88 0.956	39.63 0.953	39.77 0.956	39.84 0.954	$\frac{40.04}{0.956}$	40.03 <u>0.956</u>	40.19 0.957

• Visual Comparison



Contributions

(1) We propose Xformer, an X-Shaped Transformer with hybrid implementation of spatial-wise and channel-wise Transformer blocks, thereby exploiting the stronger global representation of tokens.

(2) We propose the Bidirectional Connection Unit (BCU) that is able to effectively couple the learned representations from two branches of Xformer. This simple design significantly enhances the global information modeling of our method.

(3) We employ Xformer to train an efficient and effective Transformerbased network for image denoising. We conduct extensive experiments on the synthetic and real-world denoising tasks. Our method achieves state-of-the-art performance.

Thanks!