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Overview

This works presents a novel risk-sensitive RL frame-
work that employs an Iterated Conditional Value-at-
Risk (ICVaR) objective under both linear and gen-
eral function approximations, and also integrates hu-
man feedback setting. We presents provably sample-
eficient algorithms and provide rigorous theoretical
analysis.

Motivation

Previous work |2| considering the ICVaR-RL only es-
tablishes regret guarantees for tabular MDPs, which
is inapplicable to large state space. Moreover, many
real-world applications of RL such as LLM |3, 4
learning from human feedbacks, underscoring the
crucial role of infusing human feedback into risk-
sensitive RL.

Formulation

e The Markov Decision Processes (MDPs) for
traditional RL models

M = (87 A, K, H, {Ph}ﬁ:b {Th}thl)
e The Conditional Value-at-Risk (CVaR) operator

CVaRp(X) :=sup {:E L C|(r — X)ﬂ}
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e The Iterated CVaR objective:
J(m) = ri(s1,a1) + CVaR§ p (15,0 (7“2(32, as)

+ CV&R%NPQ(-BQ,@) (Tg(Sg, Cbg)

+ ( o CVaR§H~PH_1(°\sH_1,aH—1) (TH(SH’ CLH))> >>

ICVaR RL

Value and Q functions:

Qh(s,a) = (s, a) + CVaRY _p, (fs.0)(Vili(s)
T Vi(s) = Qp(s, m(s))

\ Vg_|_1<8> — O,\V/S E S

Optimal Policy:

S

Vi (8) = max V'(s)

Regret Metric:
K

Regret(K) := kz::l (Vf(skl) — ka(skl)) ,

Function Approximation

Linear Function Approximation: For any
step h € [H], there exists a vector ), € RY with
104|]> < v/d such that

Pu(s" | s,a) = (On, ¢(5', 5, a))

holds for any (s',s,a) € S x § x A. Moreover, the
agent has access to the feature basis ¢.

General Function Approximation: The
transition kernels {P,}4 ; € P where P is a func-
tion class of transition kernels with the form P :
S x A — A(S). In addition, the agent has access
to such function class P.

Algorithm ICVaR-L

We develop a provably efficient (both computa-
tionally and statistically) algorithm ICVaR-L for
ICVaR-RL with linear function approximation,

Algorithm 1 ICVaR-L
Require: risk level a € (0, 1], approximation accuracy € > 0, regularization parameter A > 0,

bonus multiplier 3.
1: Initialize Ay, < AL 015 < 0, Vi gr+1(-) < Oforany k € [K] and h € [H].
2: forepisode k = 1,..., K do

3: forsteph=H,...,1do

4 // Optimistic value iteration

5: Bk,h(': ") = o SUPgzenN. ||¢($_f7k,h+l)+ (': )”fik_lh

6: Qi) =rl) + [CFY (Vins)I( ) + 26 + Biol )

7 T?k’h(-) «— min{maxaeA @k,h(-,a),H}

8: 7F(-) < arg maxge s Qr.n(-, a)

9: end for
10: forsteph=1,---,H do
11: Observe the current state sy, 5, and take the action ay j, = ﬂka(Sk,h)
12: Calculate Tk h < ArgMaXzeN. ”?’b(:r:—{};c,hﬂﬁ (Sk,h; ak’h)nﬁk_,lh
13: Aetrh < Nen + ¥ 00 Sk @)W 0, y+ (Skihs akn) |
14: 9;;4_1’}1 «— AE,}:, Zle w(mi,h—ﬁ,hﬂﬁ(si:h’aiah)(mivh — Vz‘,h+1)+(3i,h+1) // Solution to

ridge regression

15:  end for
16: end for

Main Results of Linear FA

e Key Components:

e CVaR Operator Approximation(Line 6) We
take a supremum over the discrete finite set M- instead of
the interval [0, H| while guaranteeing that the error
between the approximated CVaR operator and the true
CVaR operator is at most 2¢.

e CVaR-Adaptive Ridge Regression(Lines 12-14)
We consider {w(xi,h—@,hﬂ)* ¥ | as the regression features,
which are different from {t)o }%_ , used in previous

i ht1
risk-neutral linear mixture MDP works |7, §].

e Regret Upper Bound

Algorithm ICVaR-HF

We firstly consider the risk-sensitive RL with human

feedback and general FA and present the provably
eficient algorithm ICVaR-HF.

Theorem 1. Suppose Assumption 1 holds, and for given 6 € (0,1], set A\ = H? e =

dH~/af=3 /K, and the bonus multiplier B = H\/d log (H%KH?') + v\ Then, with probabil-
ity at least 1 — 20, the regret of ICVaR-L (Algorithm 1) satisfies

K ~ | KH 4log, K + 8
2 3 2
Regret(K) < 4dH \| 7T T 25\/ i 1\/SdH log(K) + 4H3 log 3 : (10)

Algorithm 2 ICVaR-HF

1: Execute an arbitrary policy to collect trajectory 7o = (So.1, @01, , S0,H, Q0,1 )-
2:. fork=1---K do
3:  Receive the initial state sy, 1

4:  Choose the estimated reward 7% « arg max, s VA (8k,1;77,). #/ Choose the estimated
reward v"

5. forh=H,---,1do

6: Qi,n(s-) — 71 ) = T3 (S0,ns a0,n) + subprep, [Cp (Vag1)] ()

7: Vi (") < maxge s Qr.n(-; a), mi (1) = arg maxae 4 Q1 (-, @)

8:  end for

9:  Execute the policy 7% := {nF}{L .. In every step h, receive state sj ; and execute action
ax.n = Tk n(Sk.n). Then collect the trajectory 7, = (Sk.1, k.1, Sk.2, Ok.25 " * » Sk H Ok H)-

10: ~ Compare two trajectories 7, 7o and collect observation oy, from human feedback.

11:  Update the reward confidence set Ry, 1 < {r € R : Li(7) > max,er Li(7') — 33}.
122 forh=1,---,Hdo

13: Pr41,n < argminpep Zle Dist; n (PP, Ok 1) // Estimate the transition kernel [P,
14: 73k+1,h = {IP” cepP: Zle Dist; p (P, fE\Di,h) < ?2} // Construct the confidence set
15: end for

16: end for

e Regret Lower Bound

Theorem 4. Let H > 2, d > 2, and an interger n € |H — 1|. Then, for any algorithm, there exists
an instance of Iterated CVaR RL under Assumption 1, such that the expected regret is lower bounded
as follows:

an

E[Regret(K)| = Q (d(H —n) K) : (47)

Avlgorithm ICVaR-L enjoys the regret uppper bound
O(y/Ja~HH)(d2H* + dH%) K) and the regret lower
bound Q(dva~H-DK). We can see that ICVaR-L

achieves a nearly minimax optimal with respect to
factors d and K, and the factor Vo= in our regret
upper bound is unavoidable in general.

Human Feedback Setting

We consider the classic RLHF model |5, 6].

e Human Feedback: 'The agent cannot observe
numerical reward signals, but only receives
human feedback that describes human preferences
for two different trajectories.

¢ Underlying Ground Truth Reward:
There is a unknown underlying reward r* in a
known infinite function set R.

e Comparison Oracle: A comparison oracle

takes in two trajectories 7y, 7 and returns
o ~ Ber(o(r*(m) — r"(m))),

where o(+) is a known link function, e.g., sigmoid
function (a.k.a. the BTV model [1]).

[CVaR-HF satisfies 5(\@ ) regret upper bound,

which 1s stated below.

Theorem 3. For some positive constant § € (0, 1], we set the estimation radius Br = clog(K -
Ne(R,| - |0, 1/K)/8) and 3 = 4H? (2 log (QH'Nc(P{'S"'OW/m) + 1+ +/log(BK? /5)) for
some constant c. Denote Then with probability at least 1 — 40, the regret of Algorithm 2 satisfies

Regret(K) < O (\/KH3a—H—1 ( HDp + \/m_lDR)) : (16)

where the dimension parameters D, := dg(Z)log(Nc(P, |||lo.1, 1/K) detailed in Theorem 2, and
Dr :=dg(R)1og(NB(R, | |w,1/K)). Here dg(R) := dimg (R, 1/vVK) is the eluder dimension

of R, and Ng(R,| - ||, 1/K) is the 1/ K -bracketing number of R under norm | - |o. *
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