

Jiacheng Chen^{1,*}, Zeyuan Ma^{1,*}, Hongshu Guo¹, Yining Ma², Jie Zhang², Yue-Jiao Gong^{1, †}

¹South China University of Technology

²Nanyang Technological University

Black-Box Optimization (BBO):

Traditional BBO optimizer workflow:

Well-known BBO optimizers:

Meta-Black-Box Optimization (BBO):

Traditional optimizers require heavy humancrafting!!!

MetaBBO methods introduce a novel meta-level as an automatic decision process. The purpose is to alleviate the need for labor-intensive manual designing/fine-tuning of low-level BBO optimizers.

Mathematically:

 $max_{\theta} E_{f \sim D, \pi_{\theta}} \left[\sum_{t=0}^{T} r_{t} \right]$

D: optimization task distribution π_{θ} : meta level control policy r_t : performance gain at lower level

Since existing works either show dependence on hand-crafted optimizers or poor intepretability, we propose Symbol to address these issues.

Recall that the workflow of MetaBBO for Auto-Configuration:

and the workflow of MetaBBO for Candidate Solution Proposal:

Our Symbol estabilshes a generating process as:

High-level workflow of Symbol

candidate symbols

operators:
$$+ - \times$$

operands: $x x^* x^- x_i^* c \Delta x x_r$

the symbols above is sufficient for deriving many well-known optimizers such as :

DE:
$$(x_{r1} - x) + c \times (x_{r2} - x_{r3})$$

PSO: $c1 \times \Delta x + c2 \times (x^* - x) + c3 \times (x_i^* - x)$

Any off-the-shelf time-series neural network can be used, while we adopt LSTM in our paper.

Seems like a perfect generation process, yet how do we learn the LSTM?

recall the low-level workflow:

and analog it to a Markov Decision Process:

If we could define what is the **<u>Reward</u>**, the LSTM would be properly trained by RL:

Symbol-E: Learn to find optimal solution (exploration)

$$R_{\text{explore}}\left(\tau^{(t)}, f\right) = (-1) \cdot \frac{y^{*,(t)} - y^{\text{opt}}}{y^{*,(0)} - y^{\text{opt}}}$$

Symbol-G: Learn from an adavanced teacher optimizer (<u>exploitation</u>)

$$R_{\text{guided}}\left(\tau^{(t)}, f\right) = \frac{-1}{x_{max} - x_{min}} \cdot \max\left\{\min\left\{|x_i^{(t)} - x_{\kappa,j}^{(t)}|_2\right\}_{j=1}^{|x_{\kappa}|}\right\}_{i=1}^{|x|}$$

Symbol-S: Synergize the above two (exploration-exploitation trade-off)

$$R_{\text{synergized}}(\cdot) = R_{\text{explore}}(\cdot) + \lambda R_{\text{guided}}(\cdot)$$

We train Symbol using the proposed three reward functions, teacher optimizer is <u>MadDE</u>. Training algorithm is <u>PPO</u>, a dominating policy gradient method. Training tasks come from well-known BBO synthetic benchmarks. During the experimental analysis, we have the following observations:

-	Meta Test (D)				Meta Generalization (HPO-B)			Meta Generalization (Protein-docking)		
	#Ps=100, #Dim=10, #FEs=50000			$\#Ps=5, \#Dim=2\sim16, \#FEs=500$			#Ps=10, #Dim=12, #FEs=1000			
	Baselines	Mean $\uparrow \pm$ (Std)	Time	Rank	Mean $\uparrow \pm$ (Std)	Time	Rank	Mean $\uparrow \pm (Std)$	Time	Rank
BBO	RS	$0.932 \pm (0.007)$	-/0.03s	11	$0.908 \pm (0.004)$	-/0.02s	8	$0.996 \pm (0.000)$	-/0.003s	4
	MadDE	$0.940 \pm (0.009)$	-/0.8s	6	$0.932 \pm (0.004)$	-/0.2s	6	$0.991 \pm (0.001)$	-/0.4s	8
	sep-CMA-ES	$0.935 \pm (0.017)$	-/1.3s	9	$0.870 \pm (0.017)$	-/0.1s	9	$0.971 \pm (0.000)$	-/0.3s	10
	ipop-CMA-ES	$0.970 \pm (0.012)$	-/1.4s	3	$0.938 \pm (0.013)$	-/0.1s	5	$0.996 \pm (0.003)$	-/0.3s	5
	SMAC	$0.937 \pm (0.019)$	-/1.1m	7	0.979 ±(0.005)	-/0.7m	1	$0.998 \pm (0.000)$	-/3.8m	2
MetaBBO	LDE	0.970±(0.006)	9h/0.9s	2	fail		fail			
	DEDDQN	$0.959 \pm (0.007)$	38m/1.1m	5	$0.862 \pm (0.026)$	-/0.6s	10	$0.993 \pm (0.000)$	-/1.3s	7
	Meta-ES	$0.936 \pm (0.012)$	12h/0.4s	8	$0.949 \pm (0.002)$	-/0.1s	3	$0.984 \pm (0.000)$	-/0.3s	9
	MELBA	$0.846 \pm (0.012)$	4h/2.6m	13	fail			fail		
	RNN-Opt	$0.923 \pm (0.010)$	11h/0.4m	12	fail			fail		
	SYMBOL-E	$0.934 \pm (0.008)$	6h/0.9s	10	$0.920 \pm (0.007)$	-/0.5s	7	$0.996 \pm (0.000)$	-/0.5s	3
	SYMBOL-G	$0.964 \pm (0.012)$	10h/1.0s	4	$0.940 \pm (0.011)$	-/0.5s	4	$0.995 \pm (0.000)$	-/0.5s	6
	SYMBOL-S	0.972 ±(0.011)	10h/1.3s	1	$0.963 \pm (0.006)$	-/0.7s	2	0.999 ±(0.000)	-/0.7s	1

Superior in-distribution and out-of-distribution generalization ability

^{Note:} For meta generalization, we test on HPO-B and protein-docking tasks featuring different task dimensions (#Dim), population sizes (#Ps), and optimization horizons (#FEs). Note that several MetaBBO methods fail to generalize to these two realistic tasks: RNN-Opt and MELBA are not generalizable across different task dimensions; LDE is not generalizable across different population sizes.

Update rule $(x + \underline{\tau})$	Frequency	
$x + 0.18 \times (x^* - x_r) + 0.42 \times (x_i^* - x_r)$	42.207%	
$x + 0.18 \times (x^* - x) + 0.42 \times (x_i^* - x)$	39.448%	
$x + 0.18 \times (x^* - x_i^*)$	7.448%	
$x + 0.6 \times (x^* - x_r) + \overline{0.6 \times (x_i^* - x)} + 0.18 \times (x^* - x_i^*)$	2.601%	
$x + 0.78 \times (x^* - x_r) + 0.42 \times (x_i^* - x_r)$	1.586%	

Table 2: Generated update rules and corresponding frequencies.

Table 3: 2D Rastrigin.

Figure 4: Evolution visulization of the optimizers, showing the position of population (red dots) and the global optimal (yellow star). **Top**: SYMBOL-S; **Middle**: original DE; **Bottom**: CMA-ES.

Our Symbol intelligently apply:

a)
$$0.18 \times (x^* - x_r) + 0.42 \times (x_i^* - x_r)$$
 at $20 \le t \le 25$

to introduce random exploration, hence avoid the pre-mature.

b) $0.18 \times (x^* - x) + 0.42 \times (x_i^* - x)$ at $25 \le t \le 30$

to prompt the population converging to the real optimal area, hence accelerate the optimization process. We would like to list several promising future works of our Symbol:

- I. auto-extraction of optimization status features
- II. futher extension of basis symbol set with careful design
- III. the use of Large Language Models (LLMs)
- IV. Can we learn from multiple teachers?

project page

We also welcome any questions about our work, feel free for asking!!!

our team page

