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Black-Box Optimization (BBO):

𝑚𝑖𝑛𝑥𝑓(𝑥) , 𝑥 ∈ 𝑅𝑑 , 𝑓: 𝑅𝑑 → 𝑅 , {𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖}𝑖=1
𝑑

optimization objective variable evaluation function searching range

Traditional  BBO optimizer workflow:
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Meta-Black-Box Optimization (BBO):

Traditional optimizers 

require heavy human-

crafting!!!

General workflow

of BBO optimzier
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Workflow of different paradigms

MetaBBO methods introduce a novel meta-level 

as an automatic decision process. The purpose is 

to alleviate the need for labor-intensive manual 

designing/fine-tuning of low-level BBO optimizers.

Mathematically:

𝑚𝑎𝑥𝜃𝐸𝑓~𝐷,𝜋𝜃[෍
𝑡=0

𝑇

𝑟𝑡]

𝐷: optimization task distribution

𝜋𝜃: meta level control policy

𝑟𝑡: performance gain at lower level



Since existing works either show dependence on hand-crafted optimizers or poor intepretability, 

we propose Symbol to address these issues.

Recall that the workflow of MetaBBO for Auto-Configuration:

and the workflow of MetaBBO for Candidate Solution Proposal:

Our Symbol estabilshes a generating process as:
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dynamically generate optimization strategy

more flexible

identify undiscovered rules

elegant interpretability



candidate symbols 
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operators:

operands: 𝑥−

the symbols above is sufficient for deriving 

many well-known optimizers such as :

DE:   𝑥𝑟1 − 𝑥 + 𝑐 × 𝑥𝑟2 − 𝑥𝑟3

PSO:  𝑐1 × Δ𝑥 + 𝑐2 × 𝑥∗ − 𝑥 + 𝑐3 × 𝑥𝑖
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Any off-the-shelf time-series neural network can be used, while we adopt LSTM in our paper.

LSTM

To construct a symbolic binary tree corresponding to an optimization update rule:

The generated 

symbolic tree
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Given the current optimization status, we apply an 

LSTM generating a finite-depth symbolic tree, 

which can be transformed as an update rule later.



Seems like a perfect generation process, yet how do we learn the LSTM?

The lower level update process
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recall the low-level workflow:

and analog it to a Markov Decision Process:

State

RL

Agent

Action

Reward

If we could define what is the Reward, 

the LSTM would be properly trained by RL:

Symbol-G: Learn from an adavanced teacher optimizer (exploitation)

Symbol-E: Learn to find optimal solution (exploration)

Symbol-S: Synergize the above two (exploration-exploitation trade-off)

𝑅explore τ 𝑡 , 𝑓 = −1 ⋅
𝑦∗, 𝑡 − 𝑦opt
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𝑅synergized ⋅ = 𝑅explore ⋅ + λ𝑅guided ⋅



We train Symbol using the proposed three reward functions, teacher optimizer is MadDE. 

Training algorithm is PPO, a dominating policy gradient method.

Training tasks come from well-known BBO synthetic benchmarks.

During the experimental analysis, we have the following observations: 

Superior in-distribution and out-of-distribution generalization ability



Flexible exploration-exploitation trade-off with certain intepretability

Our Symbol intelligently apply:

a) 0.18 × 𝑥∗ − 𝑥𝑟 + 0.42 × 𝑥𝑖
∗ − 𝑥𝑟 at 20 ≤ t ≤ 

25 

to introduce random exploration, hence avoid

the pre-mature.

b) 0.18 × 𝑥∗ − 𝑥 + 0.42 × 𝑥𝑖
∗ − 𝑥 at 25 ≤ t ≤ 

30

to prompt the population converging to the

real optimal area, hence accelerate the opti-

mization process.  
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We would like to list several promising future works of our Symbol:

We also welcome any questions about our work, feel free for asking!!!

I. auto-extraction of optimization status features

II. futher extension of basis symbol set with careful design

III. the use of Large Language Models (LLMs)

IV. Can we learn from multiple teachers?


