Beyond Spatio-Temporal
Representations: Evolving Fourier
Transform for Temporal Graphs

Anson Bastos, Kuldeep Singh, Abhishek Nadgeri, Manish Singh, Toyotaro Suzumura

HERE Technologies, India
IIT Hyderabad, India

RWTH

mailto:ansonbastos@gmail.com

Dynamic Graph Representation Learning

e Consider the sequence of Graphs {G } with N_ nodes and with E_edges that evolves
dynamically with time, then the aim is to learn some vector representation of G, (graph
at time t) capturing the historical interaction till t.

L I~ -~

e Some of the application of Dynamic Graph Representation learning are:
o Link Prediction: understand how pairs of nodes are connected to the graph.
o Edge Classification: classify the evolving edges in the graph.
o Node Classification: predict properties of nodes in the graph.

Challenges

Tremendous progress in the domain of Graph Representation Learning for static graphs.
However, many real world graphs are dynamic in nature such as social network graphs,
citation graphs, transaction networks, e-commerce preference graphs, epidemiological
transmission graphs etc.
e It has been shown that the static graph methods do not work well in this setting of
dynamic graphs
e It remains an open research question to suitably model the representation learning
problem for dynamic graphs
o Many attempts aim to capture the time varying properties using RNNs ahead of
static Graph Neural Networks (GNNs)
o Researchers have also tried using a autoencoders to learn the evolving features in
an unsupervised manner

o Recently researchers argue that learning the parameters of GNNs dynamically helps
to effectively capture the evolving graph structure

Existing works and limitations

e Some major works in this direction are
o DynGEM (Goyal et.al., IJCAI 2017)
m Proposes to use auto encoders for learning over timesteps
o dyngraph2vec (Goyal et.al., Knowledge-Based Systems 2019)
m Autoencoder uses an RNN to incorporate past node information
o EvolveGCN (Pareja et.al., AAAI 2018)
m Learns the GCN parameters to evolve over time using an RNN
o GAEN (Shi et.al., IJCAI 2021)
m Learns parameters of a GAT with an RNN that focus on graph topology
discrepancies
e The existing methods learn spatial features by local neighborhood aggregation, which
essentially only captures the low pass signals and local interactions

e These works ignore the global interactions that may emerge due to dynamic nature of
the graph

Motivation

We argue that capturing global dependencies, beyond local neighborhood aggregation
will enhance representation learning in dynamic graphs
For this we view the problem through the lens of spectral graph theory to learn
representations after transformation in the dynamic graph spectral space to capture
global interactions of the dynamic graph

o For this we need to propose a novel Spectral Transform for Evolving Graph

@) Y a8 & R a 6D 6 a8

Classical Fourier Transform

15
1
0.5

Source: Bentley, Paul M., and J. T. E. McDonnell. "Wavelet transforms: an introduction." Electronics & communication
engineering journal 6.4 (1994): 175-186.

Graph Fourier Transform

fi fa f3 0

1

1

T

sz ”fz—fl sz* =fs—fz

Vify = iv.vm ,
Vi, =V - Xfy

~Vifa=2fr—fi—fs

The laplacian of the ring graph is a circulant matrix.

The eigenvalues of L turn out to be the frequencies and the eigenvectors turn out to be the

basis of the Fourier transform!

Generalizing this to the graph setting gives us the spectra and basis of the graph Fourier

transform

Graph Fourier Transform

Lxe = Aexe
A N
) = (xe,) =) _xi(n)f(n) . GET
fn)=>" f(O)xe(n) - IGFT
=0

The eigenvalues of L turn out to be the frequencies and the eigenvectors turn out to be the
basis of the Fourier transform!

Generalizing this to the graph setting gives us the spectra and basis of the graph Fourier
transform

Evolving Graph Fourier Transform (EFT) ?

Motivation: To make spectral GNN work for temporal graphs effectively and
efficiently, there is a necessity for an invertible transform that collectively captures
evolving spectra along the graph vertex and time domain
GFT exists for static graphs but naive extension of GFT to dynamic graphs would lose
the distinction between variation along temporal and vertex domains and incur an
added computational cost by a multiplicative factor of O(T?)
Thus EFT aims to solve the following challenges over GFT:
o EFT is computationally efficient compared to the direct eigendecomposition of
the joint Laplacian.
o Distinction between time and vertex domain frequency components with EFT
provides interpretability to the transformed spectral domain.
Research question:

o How to design a collective time-vertex transform over dynamic graphs?
o What is the effectiveness of the collective time-vertex spectral filtering over
dynamic graphs?

Sketch of EFT Design

_,Ie_zi__, A

t=1

t=3 t=2

Timestep wise
Cartesian product
of the graphs

Sketch of EFT Design

Lemma 1. (Variational Characterization of Jp) The 2-Dirichlet So(X)) of the signals X on Jp is
the quadratic form of the Laplacian L 7, of Jp i.e.

NT NT
$2(X) = [vec(X)(0) [Ligp(i,d)vecX)(i)did) = vee(X)T Lgprec(X) ()
1= J1=

e This implies that L 7, > 0O since SQ(X) >0
e Thus we can be assured of the existence of the
eigenvalue decomposition

S B

Q\“’ :
4\ 5

Jp

Sketch of EFT Design - Optimization

NT NT
fmax = max / a(z)/ Ly, (i,j)x(j)didj = max 2Lz, (i,j)x

e The optimal solution x provides the basis for transforming a dynamic graph signal to
obtain its maximum frequency component, denoted by fmax. We can obtain the next
frequency values by optimizing equation 4 in orthogonal directions.

e However, this approach has an issue - the eigenvalue decomposition would have to be
performed over a large number of nodes. In a real world setting of temporal graphs
with T timesteps, this method would have a complexity of O((NT)3), which would be
prohibitive considering large number of timesteps

e Thus, we relax the objective in above equation to include solutions in the
pseudospectrum.

Sketch of EFT Design - Pseudospectrum

Pseudo-spectrum of A € C™**":
0. (A) = {z€C; |[(A-21d)7 Y| > 1/e}

Animation of o.((1 —t)Ag +tA;) for 0 <t < 1:

small € — large ¢

Ao =randn, A; =randn Ag =grc,.A1 =randn

0 . e L e L L AN AITT A AAANNNAADTA

Sketch of EFT Design - Pseudospectrum

Pseudo-spectrum of A € C"*";
0.(A) = {z€C; |(A-21d)*] > 1/e}

Animation of 0.((1 —#)Ag +tA4;) for 0 <t < 1:

'..L_

(R
N

{11
i
w
W
—
p—
£
7 oz
. A
Ag =randn, A; =randn Ag =grcar, A; =randn

L 4t . e L e . d AN ATTTAAEAATAAANANNADA

https://docs.google.com/file/d/1xTKgFvhxIDut0mZU0EAfZgfIcQLqyUO2/preview

Sketch of EFT Design

(GFT(G; X))! = (¥ X)!

(EFT({G:}; X))! = (e, X)* (2])]

= ((x ‘9)1dr)

((I3)(x°®)

Figure shows equivalence
between EFT and existing
transformations (DFT, JFT,
GFT).

Each directed arrow (e.g,
A to B), interprets as a
transform simulation
(transform A can be
simulated by B using edge
annotations)

EFT Properties

Property 1. (Equivalence in special case) Consider ¥ to be the time Fourier transform and
W, to be the Graph Fourier transform at time t. Let Y 7, be the Graph fourier transform

of Jp. In the special case of Gy, = Gy, ¥i,j € {T'} we have (¥ 7,)] = (¥p)! = (¥1 ®
{‘I’Gt})gL%J-

Property 2. EFT is an invertible transform and the inverse is given by EFT (X)g =
(\I:g;l)“()jk (\I';*)i 'n matrix form and EFT_l(;i?)j*N+i = (lI’i} ® lIlg;l)j*LN%_'J_Z Tk in vector
form.

Property 3. EFT is a unitary transform if and only if GFT is unitary at all timesteps considered
ie. WpWH = InT lﬁ"\IJGt‘IJz;t = I, VE
Property 4. EFT is invariant to the order of application of DFT or GFT on signal X.

normalized error

EFT Representations

10° 100 , : : - ;
II‘ L
= e
————————————— a-) 75
102 E 102 T
7 ©
£
——EFT 5 ——EFT
——DFT = ——DFT
----GFT -~ GFT '
1074 : : ‘ : 1074 : ; ' ' i
0 20 40 60 80 100 0 20 40 60 80 100 - -
percentile of removed entries percentile of removed entries Original Low-Pass Wave
(a) Dog (b) Dancer (¢c) Dancer

Representations on dynamic mesh datasets. Left (a,b): Reconstruction error on the

datasets illustrating the compactness of EFT . Right (c): Illustration of filtering using EFT
on the dynamic mesh of a Dancer.

Inducing EFT into a Neural Architecture

S
........ = ey
=1 Gy . . .
vvvvvvvvvvvvvvvv Tﬂgﬂli{‘v"{f‘?ﬂ x5 1 Since our idea is to perform
) ﬁ.[AdH &Nt .+ collective filtering along the
5 I o pNexTxd; i . vertex and temporal domain in
| ERediE o ~ EFT, we need two modules :
{ c RNexTxd;
s s o W_ (vertex aspect)
\ E . —>| Add & Norm S t
| 2 o W_(temporal aspect)
o | emvomsas |
roj 5 :
d ‘ i
T Xi = RNngf i XWT
Input ! T ¢ RNuxTxd;s

signals :
,, _b[time encoding layer]

Dataset Statistics

SR Datasets Beauty Games CDs

of Users 52024 31,015 1/052
of Items 57,289 23715 35,118
of Interactions 394,908 287,107 472,265
Average length 1.6 2.5 27.6
Density 0.01% 0.04% 0.08%

Nodes # Edges # Time Steps Task
(Train / Val / Test)

SBM 1,000 4,870,863 35/5/710 LP
UcClI 1,899 59,835 62/ 9117 LP
AS 6.474 13,895 70/10/20 LP
Elliptic 203,769 234,355 45113 NC

Brain 5.000 1,955,488 [§ b ol 0 A NC

Results - Large SR Datasets

GRU4Rec+ Caser SASRec HGN TiSASRec FMLPRec SRGNN HyperRec DGSR | EFT-T |

Recall@10

Beauty 43.98 42.64 48.54 48.63 46.87 47.47 48.62 34.71 52.40 | 53.23

Games Gi.15 68.83 73.98 71.42 71.85 73.62 73.49 71.24 73.51, | 77.78

CDs 67.84 61.65 71.32 71.42 71.00 72.41 69.63 71.02 72.43 | 75.42
NDCG@10

Beauty 26.42 25.47 32.19 32.47 30.45 32.38 3233 23.26 35.90 | 37.10

Games 45.64 45.93 53.60 49.34 50.19 51.26 53.35 48.96 55.70 | 58.65

CDs 44.52 45.85 49.23 49.34 48.97 53.31 48.95 47.16 51.22 | 54.99

Results - Benchmark Dynamic Graph Datasets

Datasets SBM UCI AS Ell Brn

Metrics MAP MRR | MAP MRR | MAP MRR Fl Fl
GCN 0.189 0.014 | 0.000 0.047 | 0.002 0.181 | 0.434 | 0.232
GAT 0.175 0.013 | 0.000 0.047 | 0.020 0.139 | 0.451 | 0.121
DynGEM | 0.168 0.014 | 0.021 0.106 | 0.053 0.103 | 0.502 | 0.225
GCN-GRU | 0.190 0.012 | 0.011 0.098 | 0.071 0.339 | 0.575 | 0.186
dg2vec vi 0.098 0.008 | 0.004 0.054 | 0.033 0.070 | 0.464 | 0.191
dg2vecv2 | 0.159 0.012 | 0.020 0.071 | 0.071 0.049 | 0.442 | 0.215
GAEN 0.1828 0.008 | 0.000 0.049 | 0.130 0.051 | 0.492 | 0.205
EGCN-H 0.195 0.014 | 0.013 0.090 | 0.153 0.363 | 0.391 | 0.225
EGCN-O 0.200 0.014 | 0.027 0.138 | 0.114 0.275 | 0.544 | 0.192
LED-GCN | 0.196 0.015 | 0.032 0.163 | 0.193 0.469 | 0471 | 0.261
LED-GAT | 0.182 0.012 | 0.026 0.149 | 0.233 0.384 | 0.503 | 0.150
EFT-T 0.250 0.024 | 0.055 0.181 | 0.672 0.689 | 0.616 | 0.308

Effectiveness of joint filtering in the presence of
semantic noise

o i @ o Pl e We induce semantic noise into the system by adding
a random vector to the node embeddings.

e The vector is sampled from a normal distribution

I ll with zero mean and variance equal to that of the
node embeddings.

e Then, we run experiments on our model with
learnable joint graph-time filters and without the

) o i e il filters.

e In the presence of noise, the performance of

configuration with filters is much better than that

I l- Il without any filtering.

e e o e This confirms that filtering helps with being robust
to semantic noise

Games Beauty CDs

(a) Recall@10

(b) NDCG@10

Effectiveness of filtering in the presence of structural

nOise e We test the hypothesis is that graph filters should be more robust
to graph structure perturbations than time filters.

o i i @ e e Here, we induce structural noise into the system by adding random
item nodes to a user node. This simulates the scenario in
sequential recommendation where a user randomly clicks a few

I items unrelated to the primary intention.

- . e The embeddings of the noise node are initialized randomly from
the same distribution as the item node embeddings. We randomly
add 1-4 nodes per user sequence.

e We observe that on inducing structural noise, the performance of
the configuration with graph filters is statistically better (p < 0.01

I I using a paired t-test) compared to the one with only time filters.

|

(a) Recall@10

W Graph Filter Time Filter

e The result confirms the hypothesis that graph filtering is more
robust to structural noise, affirming the need for graph-based
methods to ensure robustness to such perturbations in sequential
recommendation.

Games

(b) NDCG@10

Visualization of learnt filters

The x-axis shows the graph frequency range from 0-2
since we use the normalized laplacian. The y-axis
represents the temporal frequency normalized by the
Nyquist’s frequency. The z-axis shows the magnitudes
of the normalized frequency response.

We observe that the response magnitude is
predominant in the low-frequency region, indicating
the datasets’ nature.

There are also a few modes of frequency distribution in
the middle and higher-frequency (i.e., long-range
interactions) regions.

Illustrated behavior concludes a key finding:
aggregation happens in Tracer from distant users
besides local neighborhoods.

Summary and Conclusion

e We propose a novel transform to convert temporal graphs into the frequency domain
o In order to do so, we introduce pseudospectrum relaxations to the variational
objective obtaining a simplified transformation
o EFT provides interpretability in the sense of decomposing the transformed spectral
space into time and vertex domains
o EFT is computationally efficient for real-world applications.
e We further demonstrate the practical effectiveness for temporal graphs.
e Our work opens up new possibilities for dynamic graph analysis and representation
learning, and we encourage researchers to explore potential of EFT as a spectral

representation of the evolving graph in downstream graph representation learning
models.

Thank you

Questions? Please write to us
ansonbastos@gmail.com,
kuldeep.singh1@cerence.com ,
abhishek.nadgeri@rwth-aachen.de

mailto:ansonbastos@gmail.com
mailto:kuldeep.singh1@cerence.com
mailto:abhishek.nadgeri@rwth-aachen.de

