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Dynamic Graph Representation Learning
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● Consider the sequence of Graphs {Gt} with Nt nodes and with Et edges that evolves 
dynamically with time, then the aim is to learn some vector representation of Gt (graph 
at time t) capturing the historical interaction till t.

● Some of the application of Dynamic Graph Representation learning are: 
○ Link Prediction: understand how pairs of nodes are connected to the graph. 
○ Edge Classification: classify the evolving edges in the graph.
○ Node Classification: predict properties of nodes in the graph. 



Challenges
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● Tremendous progress in the domain of Graph Representation Learning for static graphs.
● However, many real world graphs are dynamic in nature such as social network graphs, 

citation graphs, transaction networks, e-commerce preference graphs, epidemiological 
transmission graphs etc.

● It has been shown that the static graph methods do not work well in this setting of 
dynamic graphs

● It remains an open research question to suitably model the representation learning 
problem for dynamic graphs
○ Many attempts aim to capture the time varying properties using RNNs ahead of 

static Graph Neural Networks (GNNs)
○ Researchers have also tried using a autoencoders to learn the evolving features in 

an unsupervised manner
○ Recently researchers argue that learning the parameters of GNNs dynamically helps 

to effectively capture the evolving graph structure 



Existing works and limitations
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● Some major works in this direction are
○ DynGEM (Goyal et.al., IJCAI 2017)

■ Proposes to use auto encoders for learning over timesteps
○ dyngraph2vec (Goyal et.al., Knowledge-Based Systems 2019)

■ Autoencoder uses an RNN to incorporate past node information
○ EvolveGCN (Pareja et.al., AAAI 2018)

■ Learns the GCN parameters to evolve over time using an RNN
○ GAEN (Shi et.al., IJCAI 2021)

■ Learns parameters of a GAT with an RNN that focus on graph topology 
discrepancies

● The existing methods learn spatial features by local neighborhood aggregation, which 
essentially only captures the low pass signals and local interactions

● These works ignore the global interactions that may emerge due to dynamic nature of 
the graph



Motivation
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● We argue that capturing global dependencies, beyond local neighborhood aggregation 
will enhance representation learning in dynamic graphs

● For this we view the problem through the lens of spectral graph theory to learn 
representations after transformation in the dynamic graph spectral space to capture 
global interactions of the dynamic graph
○ For this we need to propose a novel Spectral Transform for Evolving Graph



Classical Fourier Transform

6 Source: Bentley, Paul M., and J. T. E. McDonnell. "Wavelet transforms: an introduction." Electronics & communication 
engineering journal 6.4 (1994): 175-186.



Graph Fourier Transform
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The laplacian of the ring graph is a circulant matrix. 

The eigenvalues of L turn out to be the frequencies and the eigenvectors turn out to be the 
basis of the Fourier transform!
Generalizing this to the graph setting gives us the spectra and basis of the graph Fourier 
transform



Graph Fourier Transform
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The eigenvalues of L turn out to be the frequencies and the eigenvectors turn out to be the 
basis of the Fourier transform!
Generalizing this to the graph setting gives us the spectra and basis of the graph Fourier 
transform

GFT

IGFT



Evolving Graph Fourier Transform (EFT) ?
● Motivation: To make spectral GNN work for temporal graphs effectively and 

efficiently, there is a necessity for an invertible transform that collectively captures 
evolving spectra along the graph vertex and time domain

● GFT exists for static graphs but naive extension of GFT to dynamic graphs would lose 
the distinction between variation along temporal and vertex domains and incur an 
added computational cost by a multiplicative factor of O(T3)

● Thus EFT aims to solve the following challenges over GFT:
○ EFT is computationally efficient compared to the direct eigendecomposition of 

the joint Laplacian.
○ Distinction between time and vertex domain frequency components with EFT 

provides interpretability to the transformed spectral domain.
● Research question: 

○ How to design a collective time-vertex transform over dynamic graphs?
○ What is the effectiveness of the collective time-vertex spectral filtering over 

dynamic graphs?



Sketch of EFT Design
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Timestep wise 
Cartesian product 
of the graphs



Sketch of EFT Design
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● This implies that                    since 
● Thus we can be assured of the existence of the 

eigenvalue decomposition



Sketch of EFT Design - Optimization
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● The optimal solution x provides the basis for transforming a dynamic graph signal to 
obtain its maximum frequency component, denoted by fmax. We can obtain the next 
frequency values by optimizing equation 4 in orthogonal directions. 

● However, this approach has an issue - the eigenvalue decomposition would have to be 
performed over a large number of nodes. In a real world setting of temporal graphs 
with T timesteps, this method would have a complexity of O((NT)3), which would be 
prohibitive considering large number of timesteps

● Thus, we relax the objective in above equation to include solutions in the 
pseudospectrum.



Sketch of EFT Design - Pseudospectrum
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Source:https://twitter.com/gabrielpeyre/status/1694575259356369151



Sketch of EFT Design - Pseudospectrum
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Source:https://twitter.com/gabrielpeyre/status/1694575259356369151

https://docs.google.com/file/d/1xTKgFvhxIDut0mZU0EAfZgfIcQLqyUO2/preview


Sketch of EFT Design
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● Figure shows equivalence 
between EFT and existing 
transformations (DFT, JFT, 
GFT). 

● Each directed arrow (e.g, 
A to B), interprets as a 
transform simulation 
(transform A can be 
simulated by B using edge 
annotations)



EFT Properties
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EFT Representations
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Representations on dynamic mesh datasets. Left (a,b): Reconstruction error on the 
datasets illustrating the compactness of EFT . Right (c): Illustration of filtering using EFT 
on the dynamic mesh of a Dancer.



Inducing EFT into a Neural Architecture
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Since our idea is to perform 
collective filtering along the 
vertex and temporal domain in 
EFT, we need two modules :

○ ΨGt(vertex aspect)
○ ΨT(temporal aspect)



Dataset Statistics
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Results - Large SR Datasets
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Results - Benchmark Dynamic Graph Datasets
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Effectiveness of joint filtering in the presence of 
semantic noise
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● We induce semantic noise into the system by adding 
a random vector to the node embeddings. 

● The vector is sampled from a normal distribution 
with zero mean and variance equal to that of the 
node embeddings. 

● Then, we run experiments on our model with 
learnable joint graph-time filters and without the 
filters. 

● In the presence of noise, the performance of 
configuration with filters is much better than that 
without any filtering. 

● This confirms that filtering helps with being robust 
to semantic noise



Effectiveness of filtering in the presence of structural 
noise
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● We test the hypothesis is that graph filters should be more robust 
to graph structure perturbations than time filters. 

● Here, we induce structural noise into the system by adding random 
item nodes to a user node. This simulates the scenario in 
sequential recommendation where a user randomly clicks a few 
items unrelated to the primary intention.

● The embeddings of the noise node are initialized randomly from 
the same distribution as the item node embeddings. We randomly 
add 1-4 nodes per user sequence.

● We observe that on inducing structural noise, the performance of 
the configuration with graph filters is statistically better (𝑝 < 0.01 
using a paired t-test) compared to the one with only time filters. 

● The result confirms the hypothesis that graph filtering is more 
robust to structural noise, affirming the need for graph-based 
methods to ensure robustness to such perturbations in sequential 
recommendation.



Visualization of learnt filters
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● The x-axis shows the graph frequency range from 0-2 
since we use the normalized laplacian. The y-axis 
represents the temporal frequency normalized by the 
Nyquist’s frequency. The z-axis shows the magnitudes 
of the normalized frequency response.

● We observe that the response magnitude is 
predominant in the low-frequency region, indicating 
the datasets’ nature. 

● There are also a few modes of frequency distribution in 
the middle and higher-frequency (i.e., long-range 
interactions) regions.

● Illustrated behavior concludes a key finding: 
aggregation happens in Tracer from distant users 
besides local neighborhoods.



Summary and Conclusion
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● We propose a novel transform to convert temporal graphs into the frequency domain 
○ In order to do so, we introduce pseudospectrum relaxations to the variational 

objective obtaining a simplified transformation
○ EFT provides interpretability in the sense of decomposing the transformed spectral 

space into time and vertex domains
○ EFT is computationally efficient for real-world applications.

● We further demonstrate the practical effectiveness for temporal graphs.
● Our work opens up new possibilities for dynamic graph analysis and representation 

learning, and we encourage researchers to explore potential of EFT as a spectral 
representation of the evolving graph in downstream graph representation learning 
models.
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