DARTMOUTH

Bridging Neural and Symbolic Representations with Transitional Dictionary Learning

Junyan Cheng, Peter Chin Thayer School of Engineering, Dartmouth College ICLR 2024

Motivation

- **Objective:** Learn a representation that embeds both the compressive power of neural embeddings and the structural information in symbols.
- Key Insights:
 - *"Primitive symbols"* emerged in the human brain during the evolution from lowlevel neural perception to high-level symbols.
 - Symbols represent the entities or concepts that are most frequently reused and composed with each other.
- Central Question: Can we learn such a transitional representation that introduces structural information to neural embeddings?

Transitional Representation

- Neural predicate logical representation of an image x: $\Omega_x = \rho_1^1(\cdot) \land \rho_2^1(\cdot) \land \cdots \land \rho_1^2(\cdot, \cdot) \land \rho_2^2(\cdot, \cdot) \land \cdots$.
 - $\rho_i^i \in D^i$ is an i-ary predicate from i-ary dictionary D^i storing structural information.
 - Each \cdot is the embedding of a visual part r_i storing high-dimensional information.
- Transitional representation $R = \{r_i\}_{i=1}^{N_P} = f(x; \theta)$, where each $r_i \in \mathbb{R}^d$ are grounded by dictionaries *D* parameterized by θ .
- $\theta = \underset{\theta}{\operatorname{argmin}} \sum_{i}^{N} \epsilon(g(R^{i}; \theta), x^{i}) + \alpha d_{S}(g_{\theta}(R^{i}), x^{i}), g \text{ reconstruct the input with } R, \Omega_{R} = g_{\theta}(R), \epsilon \text{ is the reconstruction error, } d_{S} \text{ is the "semantic distance".}$

Compositions as Subwords

- 1867
- From our definition, symbols are the compositions that can be **frequently reused and composed**, which means $d_S(g_\theta(R^i), x^i) \propto -P(\Omega_{R^i}|x^i, \theta)$.
- Thus, we need to solve $\operatorname{argmax}_{\theta} L = \sum_{i=1}^{N} \log P(\Omega_{R^{i}} | x^{i}, \theta)$, we reduce this target to a similar problem, **subword tokenization**:

Transitional Dictionary Learning

- 1867
- <u>Kudo (ACL, 2018)</u> proposed to use an **EM algorithm** that maximizes the likelihood of the corpus with a Unigram Language Model (ULM).
- In our method: Likelihood $L = \sum_{i=1}^{N} \sum_{j=1}^{N_A} \log P(\Omega_{R^i} | x^i, \theta)$, where N_A is the number of arities considered, calculated for different arities:
 - **1-ary:** Uses the 1-gram model same as ULM $\log P(\Omega_{R^i} | x^i, \theta) = \sum_{k=1}^{N_P} \log P(r_k^i)$.
 - **N-ary:** Not considered in ULM. Uses joint probability, not N-gram models (which assume sequences). For 2-ary: $\log P(\Omega_{R^i} | x^i, \theta) = \sum_{p=1}^{N_P} \sum_{q=1}^{N_P} \log P(r_p^i, r_q^j)$.
- **Transitional Dictionary Learning (TDL)**: Optimize the multi-ary EM algorithm above while minimizing reconstruction error as the constraint.

Implementing TDL for Vision Data

- We assess our TDL framework within the *abstract visual object* settings:
 - Train a model to generate the visual parts to reconstruct the input.
 - Meanwhile, **clustering** the generated parts to learn prototype dictionaries.

Unsupervised Learning Experiment

• We use three abstract compositional visual objects datasets:

- LineWorld: 50K images of 1~3 non-overlapping shapes made up of parallel or perpendicular lines generated by babyARC engine (Wu et al., NeurIPS, 2022).
- OmniGlot (Lake et al., Science, 2015): 27K handwritten characters.
- ShapeNet5: 27K voxelized 3D shapes from ShapeNet (Chang et al., arXiv 1512.03).

Evaluation metrics: Clustering Information Gain

- Clustering Information Gain (CIG): assess the learned dictionaries.
 - Mean Clustering Error (or Energy) $MCE = \left[\sum_{i=1}^{N} \sum_{j=1}^{N_P} (\min_{c \in C} \|r_j^i c\|_2) / N_P\right] / N_P$
 - $CIG = 1 MCE_{model}/MCE_{random}$, compare to a random dictionary with no information, CIG = 1 means all clusters are concentrated in their centroids, CIG = 0 means data points are evenly scattered, higher CIG means higher cohesive.

Figure 3: t-SNE for the latent space of 1 (left) and 2-ary (right) representations in LineWorld test set.

Evaluation metrics: Heuristic Shape Score

- Heuristic Shape Score (SP): evaluates the generated visual parts in three dimensions based on whether the shapes are natural and meet human intuition:
 - Solidity: there are no holes inside a part.
 - Smoothness the surfaces or contours of the part are smooth.
 - Continuity: the shape is not segmented and is an integral whole.

Results for Unsupervised Learning

- We compare to 3 unsupervised part segmentation baselines:
 - **DFF** (Collins et al, ECCV, 2018) use Non-negative Matrix Factorization (NMF) on activation map of last convolution layer of a pretrained backbone (e.g., VGG-19).
 - SCOPS (Hung et al, CVPR, 2019) and UPD (Choudhury, NeurIPS, 2021) learn to produce kchannels heatmap of parts with self-supervised learning.
- "RL" tune an unsupervised learning model with Shape Score as reward.
- "AE" is a reference auto-encoder as a baseline for the reconstruction error.

	L	LineWorld		OmniGlot			ShapeNet5			Q	Q.	Q	\mathcal{Q}	Q.
	IoU	CIG	SP	MAE	CIG	SP	IoU	CIG	SP	7	7		7	7
AE	97.7	-		0.9	0.9 -		85.1 -		A	A	A	A	A	
DFF	-	33.1	38.3	-	36.9	33.3	-	20.1	19.2	0.0	0.0	0.0	0.0	0.0
SCO.	-	35.7	42.4	-	38.6	38.9	-	23.1	24.3					
UPD	-	36.3	42.8	-	42.8	37.4	-	25.4	22.6	2	0	0	2	2
Ours	94.3	58.0	82.6	1.8	68.5	77.6	79.8	54.6	60.1	S	5	5	J	S
w/o RL	93.7	57.0	71.9	2.0	65.1	68.0	78.8	52.9	54.4	Input	Ours	DFF	SCOPS	UPD 10

Transfer Learning Experiments

on two downstream tasks:

• Finetune unsupervised learning pre-trained models

inetune unsupervised learning pre-trained models		LW-G		OG-G
n two downstream tasks:		IoU	Acc.	IoU
• LW-G: predict the part mask (e.g., lines), and pair-wise	AE	-		-
relation annotations (e.g., perpendicular and parallel) from	DFF	43.1	28.8	42.8
the habvARC engine contains 7K samples	SCO.	46.8	26.4	46.9
the baby/tree engine, contains /it samples.	UPD	46.2	28.7	48.9
• OG-G : predict ground-truth strokes from OmniGlot, contains	Ours	78.4	74.8	75.9
5.8K samples that are not used in unsupervised learning.	w/o RL	78.2	74.3	75.1

 Few-shot learning on unseen classes from ShapeGlot (Achlioptas et al., ICCV, 2019) with our model, each class has 230~550 samples, "PT" is pre-training.

	Bed			Lamp			Sofa			Table		
	IoU	CIG	SP	IoU	CIG	SP	IoU	CIG	SP	IoU	CIG	SP
w/ PT	67.3	48.1	52.9	61.1	42.1	49.1	62.2	46.8	45.2	68.3	50.1	54.6
w/o PT	18.1	19.0	13.2	18.3	19.9	14.6	21.5	18.9	19.8	19.9	22.1	17.9

Human Evaluation

- We further hire human annotators to rate the decomposition results in the OmniGlot test set from ours and baselines:
 - Our methods provides much more valid strokes.
 - The proposed methods show a consensus to the human evaluation.

DARTMOUTH

