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GROOT: Learning to Follow Instructions
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Problem

Some example tasks in Minecraft

Developing a policy that can follow open-ended instructions
and complete multiple tasks in open-world environments such

as Minecraft is challenging and important.



Motivation

* The self-supervised pre-training paradigm can promote
large-scale task learning.

* The reference video as instruction interface is expressive
while the training data is easy to collect.



Goal Space Discovery via Future State Prediction

standing in plains chop the tree or by pass the tree ?

Q: How can we want to induce a goal space from a given gameplay dataset
D = {(s1.r)}m?

Imagine you are standing in front of a tree. The next states you will see
depend on what you want to do (goal), chop the tree of by pass the tree.



Goal Space Discovery via Future State Prediction

standing in plains chop the tree or by pass the tree ?

A: We create a generative pre-training task called future state prediction
p(S¢41.7151.¢) - This process can be modeled using the wvariational

autoencoder framework:

logp6(3t+1:T|31:t) = log Zp6(8t+1:T, 9|81:t)
g
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Goal Space Discovery via Future State Prediction

Since we want to learn a policy instead of a video generator, we
breakdown pg(S¢41.7/51:t,g) into components contributed by a goal-

conditioned policy my(a;|s1.;,g) and an inverse dynamic model

Po (aTlsl:T+1)'

T—1
log p(se+1:7181:¢) 2 D) Egrgy(forir)sar~po(lsririn) 108 To(ar|s1:7, 9)] — Dxr (45(gls1:7) || po(glsiit))

<& s ) goal space constraint (KL regularization)
N

behaviour cloning




Architecture Design
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A video encoder (non-causal transformer) learns to extract the semantic

meaning and transfer the video into the goal embedding space.

A goal-conditioned policy (causal transformer) is learned to predict
actions following the given instructions.



Architecture Design
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Training:

Given a gameplay video (s;.7), we label them with inverse dynamic
model and obtain (s;.7, a;.7). The objective function is

T—-1
L£(0,6) = E(sy.pra1,0)~D | D —10gmo(ar|s1:r,9) + AxrDrcr (95(gls1:r) || po(glsr:e))
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Architecture Design

Environment

Video Encoder Decoder as Policy
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(b) Inference

Inference:
Any reference video is passed into the video encoder to obtain goal
embeddings that drive the policy to interact with the Minecraft

environment.



Minecraft SkillForge Benchmark

We create a diverse benchmark called Minecraft SkillForge. It covers 30
tasks from 6 major categories of representative skills in Minecraft,

including collect, explore, craft items, tool use, survive, and build.




Human Evaluation on Elo Rating System
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(c) Success Rate Comparison

(a) Elo Rating Comparison

(b) Winning Rate of GROOT vs. Baselines

Although there is a large performance gap compared with human players
(2034), GROOT (1829) has significantly surpassed the current state-of-
the-art STEVE-1 series (1679) and condition-free VPT series (1500).



Human Evaluation on Elo Rating System
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(c) Success Rate Comparison

(a) Elo Rating Comparison (b) Winning Rate of GROOT vs. Baselines

On all the tasks, GROOT achieves over 50% winning rate against current
SOTA baselines, especially on less common tasks “build” and “tool”.



Human Evaluation on Elo Rating System
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(c) Success Rate Comparison

(a) Elo Rating Comparison (b) Winning Rate of GROOT vs. Baselines

GROQT is the only that achieves non-zero success rate on challenging
enchantment’, “dig 3 down fill 1 up”, and “build snow golems” tasks.



Visualization of Goal Space
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After being trained via self-supervised learning, the encoded video with

the similar semantics are clustered together.



Chain of Instructions
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Cumulativ

By chaining “dig down” and “mine horizontally” instructions, GROOT

achieves 16% diamond obtaining success rate with 10 minutes.

STEVE-1 struggle to obtain diamond because of inability of expressing

mining horizontally.



Chain of Instructions
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GROOT can be integrated with the LLM planner to solve complex and

long-horizon tasks.
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