

The Twelfth International Conference on Learning Representations

Towards Faithful Explanations: Boosting Rationalization with Shortcuts Discovery

Linan Yue¹, Qi Liu^{1,2*}, Yichao Du¹, Li Wang³, Weibo Gao¹, Yanqing An¹

1: State Key Laboratory of Cognitive Intelligence,

University of Science and Technology of China

2: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center Hefei, China

3: ByteDance

{lnyue,duyichao,wl063,weibogao,anyq}@mail.ustc.edu.cn;
giliugl@ustc.edu.cn

Presented by : Linan Yue

I Outline

1 Background of Selective Rationalization

2 Shortcuts-fused Selective Rationalization

3 Experiments of SSR

Selective Rationalization

> Unsupervised Rationalization

- This type trains the selector and predictor in tandem.
- It is worth noting that the gold rationale is unavailable during the whole training process.
- Supervised Rationalization
- It models the rationalization with a multi-task learning, optimizing the joint likelihood of class labels and extractive rationales.

(b) supervised rationalization

Semi-Supervised Rationalization

• Combining the superiority of the above two types of methods.

Existing Problems

Low Faithfulness

It is easy to exploit spurious correlations (aka., shortcuts) to yield the prediction results and compose the rationales.

- Exploiting real rationales, the problem of adopting the shortcuts to predict task results can be mitigated.
- However, such extensive annotated rationales are infeasible to obtain for most tasks, rendering this method unavailable.

Existing Problems How to solve these problems? It would be nice to know what **shortcut** is.

I Outline

1 Background of Selective Rationalization

2 Shortcuts-fused Selective Rationalization

3 Experiments of SSR

SSR

Semi-supervised rationalization

Considering a low-resource setup where they have annotated rationales for part of the training data \mathcal{D}_{semi} , \mathcal{D}_{semi} consists of \mathcal{D}_{un} and \mathcal{D}_{sup} , where $|\mathcal{D}_{un}| \gg |\mathcal{D}_{sup}|$.

Identifing potential shortcuts

SSR

Shortcuts Discovery

• How to identify potential shortcuts?

Assumption 1: *A well-trained unsupervised rationalization model inevitably composes rationales with both the gold rationale and shortcuts tokens.*

Definition 1 (Potential Shortcut Token) We first assume the unsupervised rationalization model \mathcal{M}_{un} is already trained. Then, given the annotated rationales \hat{z} and rationales z extracted by \mathcal{M}_{un} , we define $\mathbb{PST}(x_i)$ as whether a token x_i is considered to be a potential shortcut token or not:

$$\mathbb{PST}(x_i) = \mathbb{I}(x_i \in z \land x_i \notin \hat{z}), \tag{5}$$

where \wedge is the logical operation AND. $\mathbb{PST}(x_i)=1$ denotes x_i is defined as a potential shortcut token.

SSR

Shortcuts Discovery

Definition 1 (Potential Shortcut Token) We first assume the unsupervised rationalization model \mathcal{M}_{un} is already trained. Then, given the annotated rationales \hat{z} and rationales z extracted by \mathcal{M}_{un} , we define $\mathbb{PST}(x_i)$ as whether a token x_i is considered to be a potential shortcut token or not:

$$\mathbb{PST}(x_i) = \mathbb{I}(x_i \in z \land x_i \notin \hat{z}), \tag{5}$$

where \wedge is the logical operation AND. $\mathbb{PST}(x_i)=1$ denotes x_i is defined as a potential shortcut token.

SSR

Virtual Shortcuts Representations

In the unsupervised phase:

Generate virtual shortcuts representations

Encourage the model to remove the effect of shortcuts on task predictions

SSR

Data Augmentation

Random Data Augmentation

We can replace shortcuts tokens with other tokens, sampling randomly from the datastore.

• Semantic Data Augmentation

We design a retrieval grounded semantic augmentation method by replacing shortcut tokens with several tokens semantically close to them through retrieval. Algorithm 1 Semantic Data Augmentation **Input:** Supervised dataset \mathcal{D}_{sup} , and a well-trained encoder $f_{p_{un}}(\cdot)$ in unsupervised rationalization model \mathcal{M}_{un} . **Output:** Several semantic related tokens. Create a global datastore \mathcal{D}_{alobal} : for j=1 to $|\mathcal{D}_{sup}|$ do Sample x from \mathcal{D}_{sup} . Construct a key-value pair: (key, value) = $(f_{p_{un}}(x), x)$ end for $\mathcal{D}_{global} = \{ (f_{p_{un}}(x), x), \forall x \in \mathcal{D}_{sup} \}.$ Search the nearest semantic x^r to x in $\mathcal{D}_{global}, x^r \neq x$. Create a local datastore \mathcal{D}_{local} : for i=1 to $|x^r|$ do (key, value) = $(f_{p_{uv}}(x_i^r), x_i^r)$. end for $\mathcal{D}_{local} = \{ (f_{p_{un}}(x_i^r), x_i^r), \forall x_i^r \in x^r \}.$ Search the nearest semantic token x_i^r to x_i in $\mathcal{D}_{local}, x_i^r$ does not belong to gold tokens in x or x^r .

I Outline

1 Background of Selective Rationalization

2 Shortcuts-fused Selective Rationalization

3 Experiments of SSR

- > **RQ1:** Are the rationales extracted faithful ?
- > RQ2: How SSR performs as the ground rationales scale changes ?
- RQ3: Can our data augmentation methods help existing rationalebased methods improve the performance ?
- > RQ4: Does SSR capture the faithful rationales for predictions ?

Overall Performance (RQ1)

Table 1: Task F1 and Token F1 of selected rationales for the four dataset. Among them, the underlined scores are the state-of-the-art performances of the supervised rationalization. The results in bold are the best scores in our SSR and its variants.

Methods	Movies		MultiRC		BoolQ		Evidence Inference	
	Task	Token-F1	Task	Token-F1	Task	Token-F1	Task	Token-F1
Vanilla Un-RAT IB	$\left \begin{array}{c} 87.0 \pm 0.1 \\ 84.0 \pm 0.0 \end{array}\right.$	$\begin{array}{c} 28.1 \pm 0.2 \\ 27.5 \pm 0.0 \end{array}$	$\begin{array}{c c} 57.7 \pm 0.4 \\ 62.1 \pm 0.0 \end{array}$	$\begin{array}{c} 23.9\pm0.5\\ 24.9\pm0.0\end{array}$	$ \begin{vmatrix} 62.0 \pm 0.2 \\ 65.2 \pm 0.0 \end{vmatrix} $	$\begin{array}{c} 19.7 \pm 0.4 \\ 12.8 \pm 0.0 \end{array}$	$\begin{array}{c} 46.2 \pm 0.5 \\ 46.3 \pm 0.0 \end{array}$	$\begin{array}{c} 8.9\pm0.2\\ 6.9\pm0.0\end{array}$
Vanilla Semi-RAT IB (25% rationales) WSEE ST-RAT	$\begin{vmatrix} 89.8 \pm 0.2 \\ 85.4 \pm 0.0 \\ 90.1 \pm 0.1 \\ 87.0 \pm 0.0 \end{vmatrix}$	$\begin{array}{c} 30.4 \pm 0.2 \\ 28.2 \pm 0.0 \\ 32.2 \pm 0.1 \\ 31.0 \pm 0.0 \end{array}$	$63.3 \pm 0.4 \\ 66.4 \pm 0.0 \\ 65.0 \pm 0.8 \\ -$	55.4 ± 0.2 54.0 ± 0.0 55.8 ± 0.5	$\begin{array}{c} 57.3 \pm 0.3 \\ 63.4 \pm 0.0 \\ 59.9 \pm 0.4 \\ 62.0 \pm 0.0 \end{array}$	$\begin{array}{c} 43.0\pm0.1\\ 19.2\pm0.0\\ 43.6\pm0.4\\ 51.0\pm0.0\end{array}$	$\begin{array}{c} 46.1 \pm 0.5 \\ 46.7 \pm 0.0 \\ 49.2 \pm 0.9 \\ 46.0 \pm 0.0 \end{array}$	$\begin{array}{c} 25.1 \pm 0.2 \\ 10.8 \pm 0.0 \\ 14.8 \pm 0.8 \\ 9.0 \pm 0.0 \end{array}$
Vanilla Sup-RAT Pipeline AT-BMC	$\begin{vmatrix} 93.6 \pm 0.3 \\ 86.0 \pm 0.0 \\ 92.9 \pm 0.6 \end{vmatrix}$	$\begin{array}{c} 38.2 \pm 0.2 \\ 16.2 \pm 0.0 \\ \underline{40.2 \pm 0.3} \end{array}$	$\begin{array}{c} 63.8 \pm 0.2 \\ 63.3 \pm 0.0 \\ \underline{65.8 \pm 0.2} \end{array}$	$\begin{array}{c} 59.4 \pm 0.4 \\ 41.2 \pm 0.0 \\ \underline{61.1 \pm 0.5} \end{array}$	$ \begin{array}{c} 61.5 \pm 0.3 \\ \underline{62.3 \pm 0.0} \\ \overline{62.1 \pm 0.2} \end{array} $	$51.3 \pm 0.2 \\ 18.4 \pm 0.0 \\ 52.1 \pm 0.2$	$\begin{array}{c} 52.3 \pm 0.5 \\ \underline{70.8 \pm 0.0} \\ 49.5 \pm 0.4 \end{array}$	$\begin{array}{c} 16.5 \pm 0.2 \\ 54.8 \pm 0.0 \\ \overline{18.6 \pm 0.3} \end{array}$
$\begin{array}{c} \mathrm{SSR}_{unif} \\ +\mathrm{random} \mathrm{DA} \\ +\mathrm{semantic} \mathrm{DA} \\ +\mathrm{mixed} \mathrm{DA} \\ -\mathrm{shared} W_s \mathrm{and} W_p \end{array}$	$\begin{array}{ } 94.3 \pm 0.3 \\ 90.7 \pm 0.3 \\ 90.7 \pm 0.2 \\ \textbf{94.5} \pm \textbf{0.2} \\ 88.3 \pm 0.1 \end{array}$	$\begin{array}{c} 33.2 \pm 0.4 \\ 34.5 \pm 0.1 \\ 35.6 \pm 0.2 \\ 35.1 \pm 0.1 \\ 29.8 \pm 0.6 \end{array}$	$\begin{array}{c} 62.8 \pm 0.3 \\ 63.6 \pm 0.5 \\ 64.7 \pm 0.7 \\ 65.3 \pm 0.6 \\ 60.2 \pm 0.3 \end{array}$	$\begin{array}{c} 56.2 \pm 0.2 \\ 56.1 \pm 0.3 \\ 42.7 \pm 0.4 \\ 40.3 \pm 0.5 \\ 55.7 \pm 0.5 \end{array}$	$\begin{array}{c} 60.8 \pm 0.4 \\ \textbf{61.3} \pm \textbf{0.7} \\ 58.0 \pm 0.3 \\ 60.4 \pm 0.2 \\ 57.4 \pm 0.3 \end{array}$	$\begin{array}{c} 47.6 \pm 0.5 \\ 48.3 \pm 0.5 \\ \textbf{50.2} \pm \textbf{0.3} \\ 49.2 \pm 0.5 \\ 43.5 \pm 0.2 \end{array}$	$\begin{array}{c} 46.8 \pm 0.3 \\ 46.0 \pm 0.1 \\ 48.7 \pm 0.2 \\ 47.6 \pm 0.1 \\ 45.6 \pm 0.3 \end{array}$	$\begin{array}{c} 26.8 \pm 0.2 \\ 33.1 \pm 0.2 \\ 33.5 \pm 0.4 \\ \textbf{35.2} \pm \textbf{0.2} \\ 24.9 \pm 0.2 \end{array}$
$\begin{array}{c} \mathrm{SSR}_{virt} \\ +\mathrm{random} \mathrm{DA} \\ +\mathrm{semantic} \mathrm{DA} \\ +\mathrm{mixed} \mathrm{DA} \\ -\mathrm{shared} W_s \mathrm{and} W_p \\ -\mathrm{shared} W_a \mathrm{and} W_p \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{34.6} \pm \textbf{0.2} \\ \textbf{36.7} \pm \textbf{0.2} \\ \textbf{36.9} \pm \textbf{0.1} \\ \textbf{37.4} \pm \textbf{0.1} \\ \textbf{31.9} \pm \textbf{0.4} \\ \textbf{30.4} \pm \textbf{0.1} \end{array}$	$\begin{array}{c} 64.2 \pm 0.3 \\ 65.4 \pm 0.2 \\ \textbf{66.2} \pm \textbf{0.5} \\ 64.5 \pm 0.6 \\ 62.6 \pm 0.3 \\ 62.4 \pm 0.9 \end{array}$	$\begin{array}{c} \textbf{57.0} \pm \textbf{0.2} \\ 44.3 \pm 0.4 \\ 49.8 \pm 0.4 \\ 53.1 \pm 0.4 \\ 55.3 \pm 0.2 \\ 54.0 \pm 2.1 \end{array}$	$\begin{array}{c} 58.2 \pm 0.5 \\ 58.3 \pm 0.6 \\ 61.1 \pm 0.3 \\ 60.3 \pm 0.2 \\ 57.6 \pm 0.4 \\ 57.5 \pm 0.3 \end{array}$	$\begin{array}{c} 43.8 \pm 0.3 \\ 47.7 \pm 0.3 \\ 48.8 \pm 0.2 \\ 49.1 \pm 0.1 \\ 43.3 \pm 0.5 \\ 42.9 \pm 0.1 \end{array}$	$\begin{array}{c} \textbf{50.4} \pm \textbf{0.3} \\ \textbf{46.5} \pm \textbf{0.3} \\ \textbf{46.5} \pm \textbf{0.4} \\ \textbf{47.1} \pm \textbf{0.4} \\ \textbf{48.6} \pm \textbf{0.2} \\ \textbf{45.8} \pm \textbf{0.4} \end{array}$	$\begin{array}{c} 31.3 \pm 0.4 \\ 32.4 \pm 0.2 \\ 31.1 \pm 0.2 \\ 33.4 \pm 0.3 \\ 25.8 \pm 0.4 \\ 25.0 \pm 0.2 \end{array}$
				Data	~ ~ 4			

Table 3: Generalization Evaluation onIMDB and SST-2.

Methods	IMDB	SST-2
Vanilla Un-RAT +semantic DA Vanilla Semi-RAT +semantic DA WSEE +semantic DA	$\begin{array}{c} 85.3 \pm 0.2 \\ 86.6 \pm 0.4 \\ 89.5 \pm 0.4 \\ 89.7 \pm 0.3 \\ 90.5 \pm 0.3 \\ 91.0 \pm 0.4 \end{array}$	$\begin{array}{c} 45.3\pm8.1\\ 47.8\pm6.6\\ 75.9\pm0.7\\ 76.4\pm0.5\\ 77.1\pm0.6\\ 78.3\pm0.7\end{array}$
SSR _{unif} +semantic DA SSR _{virt} +semantic DA	$\begin{array}{c} 90.3 \pm 0.2 \\ \textbf{90.7} \pm \textbf{0.1} \\ 89.9 \pm 0.2 \\ 90.3 \pm 0.3 \end{array}$	$\begin{array}{c} 79.4 \pm 0.3 \\ 82.4 \pm 0.8 \\ 79.9 \pm 0.4 \\ \textbf{83.5} \pm \textbf{0.5} \end{array}$

IID Dataset

Gold Rationale Efficiency (RQ2)

68

66

64

62

58

56

52

0.3

0.05

Ξ 60

+random DA

+mixed DA

0.25

AT-BMC

0.20

-semantic DA

Results of Data Augmentation (RQ3)

0.10

0.15

Percentage

Strategy2 SSR_{virt}

SSR

random DA

mixed DA

0.25

0.30

AT-BMC

0.20

mantic DA

Table 2: Task F1 and Token F1 of selected rationales for the four dataset with random DA.

Methods	Movies		MultiRC		BoolQ		Evidence Inference	
methods	Task	Token-F1	Task	Token-F1	Task	Token-F1	Task	Token-F1
Vanilla Un-RAT Vanilla Semi-RAT WSEE AT-BMC	$\begin{array}{ } 88.0 \pm 0.4 \\ 90.6 \pm 0.3 \\ 89.9 \pm 0.4 \\ 92.8 \pm 0.1 \end{array}$	$\begin{array}{c} 28.4 \pm 0.3 \\ 31.6 \pm 0.1 \\ 33.4 \pm 0.3 \\ 40.4 \pm 0.3 \end{array}$	$\begin{array}{ } 58.4 \pm 0.2 \\ 64.2 \pm 0.4 \\ 65.3 \pm 0.1 \\ 66.6 \pm 0.6 \end{array}$	$\begin{array}{c} 24.7\pm 0.3\\ 56.2\pm 0.3\\ 55.7\pm 0.3\\ 61.8\pm 0.5\end{array}$	$\begin{array}{c} 62.1 \pm 0.3 \\ 58.9 \pm 0.1 \\ 61.0 \pm 0.2 \\ 62.0 \pm 0.1 \end{array}$	$\begin{array}{c} 23.5\pm0.2\\ 44.5\pm0.3\\ 45.5\pm0.3\\ 52.6\pm0.2\end{array}$	$\begin{array}{c} 47.0 \pm 0.4 \\ 45.0 \pm 0.3 \\ 50.0 \pm 0.3 \\ 49.5 \pm 0.3 \end{array}$	$\begin{array}{c} 10.4\pm0.3\\ 26.0\pm0.3\\ 18.7\pm0.5\\ 19.4\pm0.6\end{array}$
$rac{ ext{SSR}_{unif}}{ ext{SSR}_{virt}}$	$\begin{array}{ } 90.7 \pm 0.3 \\ 92.8 \pm 0.2 \end{array}$	$\begin{array}{r} 34.5 \pm 0.1 \\ 36.7 \pm 0.2 \end{array}$	$\begin{array}{ } 63.6 \pm 0.5 \\ 65.4 \pm 0.2 \end{array}$	${56.1 \pm 0.3 \atop 44.3 \pm 0.4}$	$\begin{array}{c} 61.3 \pm 0.7 \\ 58.3 \pm 0.6 \end{array}$	$\frac{48.3 \pm 0.5}{47.7 \pm 0.3}$	$\begin{array}{c} 46.0 \pm 0.1 \\ 46.5 \pm 0.3 \end{array}$	$\begin{array}{c} 33.1 \pm 0.2 \\ 32.4 \pm 0.2 \end{array}$

Table 3: Task F1 and Token F1 of selected rationales for the four dataset with semantic DA.

Methods	Methods Mor		vies Mult		tiRC Boo		Evidence	e Inference	
in the second se	Task	Token-F1	Task	Token-F1	Task	Token-F1	Task	Token-F1	
Vanilla Un-RAT Vanilla Semi-RAT WSEE AT-BMC	$\begin{vmatrix} 88.3 \pm 0.2 \\ 90.1 \pm 0.3 \\ 88.9 \pm 0.7 \\ 93.2 \pm 0.3 \end{vmatrix}$	$\begin{array}{c} 28.7 \pm 0.5 \\ 31.3 \pm 0.3 \\ 33.1 \pm 0.5 \\ 40.7 \pm 0.5 \end{array}$	$\begin{array}{c} 59.0 \pm 0.3 \\ 64.4 \pm 0.1 \\ 64.9 \pm 0.3 \\ 66.0 \pm 0.6 \end{array}$	$\begin{array}{c} 25.1 \pm 0.4 \\ 56.6 \pm 0.3 \\ 55.9 \pm 0.3 \\ 60.9 \pm 0.4 \end{array}$	$\begin{array}{c} 61.9 \pm 0.6 \\ 59.1 \pm 0.4 \\ 60.9 \pm 0.4 \\ 62.2 \pm 0.3 \end{array}$	$\begin{array}{c} 23.7\pm0.4\\ 44.4\pm0.2\\ 46.6\pm0.6\\ 52.0\pm0.1 \end{array}$	$\begin{array}{c} 47.3 \pm 0.3 \\ 46.6 \pm 0.6 \\ 49.7 \pm 0.3 \\ 50.0 \pm 0.4 \end{array}$	$\begin{array}{c} 11.7\pm0.4\\ 26.9\pm0.5\\ 20.9\pm0.4\\ 22.3\pm0.6\end{array}$	
$\frac{\text{SSR}_{unif}}{\text{SSR}_{virt}}$	$\begin{array}{ } 90.7 \pm 0.2 \\ 87.6 \pm 0.3 \end{array}$	$\begin{array}{c} 35.6\pm0.2\\ 36.9\pm0.1 \end{array}$	$\begin{array}{c} 64.7 \pm 0.7 \\ 66.2 \pm 0.5 \end{array}$	$\begin{array}{c} 42.7 \pm 0.4 \\ 49.8 \pm 0.4 \end{array}$	$\begin{array}{c} 58.0\pm0.3\\ 61.1\pm0.3\end{array}$	$50.2 \pm 0.3 \\ 48.8 \pm 0.2$	$\begin{array}{c} 48.7 \pm 0.2 \\ 46.5 \pm 0.4 \end{array}$	$\begin{array}{c} 33.5 \pm 0.4 \\ 31.1 \pm 0.2 \end{array}$	

Experiments

Strategy1 SSR_{unif}

68

66

64

62

58

52

0.05

0.10

0.15

Percentage

<u>문</u> 60

Case Study (RQ4)

Model	Visualized Example	Predicted Label
Vanilla Un-RAT	The film has received a lukewarm response on review sites . What I was in for was a disappointing and overlong film which was anything but the best picture of 1995. What drags it down is its screenplay. It abounds with high production values	Negative
SSR _{unif}	The film has received a lukewarm response on review sites. What I was in for was a <u>disappointing and</u> <u>overlong film</u> which was anything but the best picture of 1995. <u>What drags it down is its screenplay</u> . It abounds with high production values	Negative

(a) Visualized selective rationales on Movies. The real label in this case is *Negative*.

Model	Visualized Example	Predicted Label
Vanilla Un-RAT	Mozart is a famous musician and amadeus is a biographical film about him, <u>amadeus is a true work</u> of art. it is one of those few movies of the 80 's that <u>will be known for its class</u> , its style, and its intelligence. why is this such a good film	Positive
SSR _{unif}	Mozart is a famous musician and amadeus is a biographical film about him, <u>amadeus is a true work of</u> <u>art</u> . it is one of those few movies of the 80 's that <u>will be known for its class</u> , its style, and its intelligence. why is this <u>such a good film</u>	Positive

(b) Visualized selective rationales on Movies. The real label in this case is *Positive*.

Model	Visualized Example	Predicted Label
Vanilla Un-RAT	Moonlight mile is replete with acclaimed actors and actresses and tackles a subject that 's potentially moving , <u>the movie is too predictable and too self-conscious to reach a level of high drama</u> .	Positive
SSR unif	Moonlight mile is replete with acclaimed actors and actresses and tackles a subject that 's potentially moving, the movie is too predictable and too self-conscious to reach a level of high drama.	Negative
	(c) Visualized selective rationales on SST-2. The real label in this case is <i>Negative</i> .	

The Twelfth International Conference on Learning Representations

认知智能全国重点实验室 STATE KEY LABORATORY OF COGNITIVE INTELLIGENCE