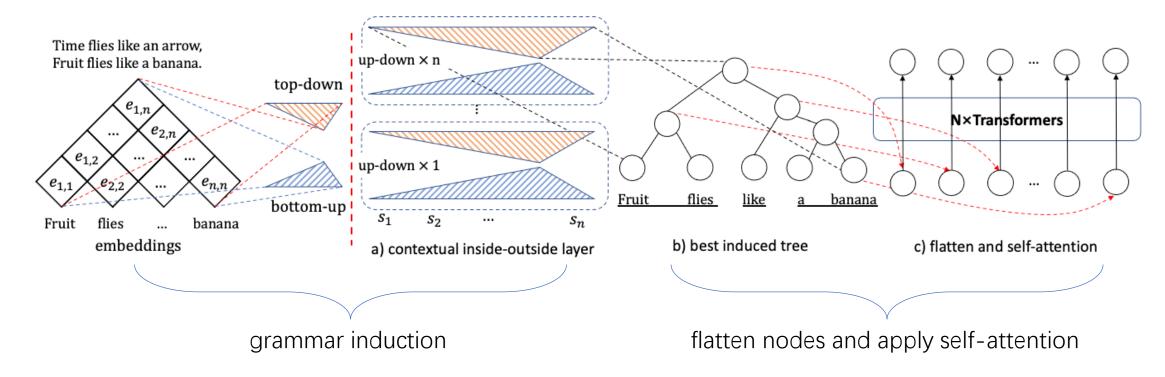
Augmenting Transformers with Recursively Composed Multi-grained Representations

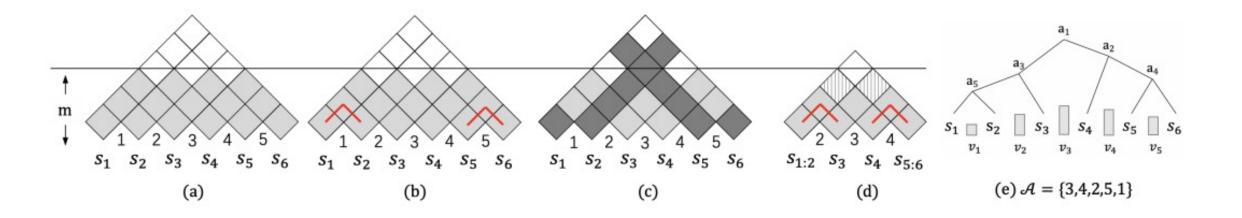
Xiang Hu, Qingyang Zhu, Kewei Tu, Wei Wu


Motivation

- Human language has hierarchical structures and different granularities
 - Time flies like an arrow. Fruit flies like a banana.
- Transformer perform self-attention solely at the token-level
- What if self-attention happens over multi-grained constituents? How to obtain hierarchical structures with out gold-trees?

Fruit flies like a banana

Approach


• Deep inside outside algorithm with iterative up & down

Using the masked language model as the pre-training objective

Approach

• log N variant of the deep inside-outside encoder

Experiment results(span-level tasks)

System	NEL	SRL	CTL	COREF
Fast-R2D2	91.67/92.67	79.49/80.21	91.34/90.43	87.77/86.97
Transformer6 _{mean}	90.41/90.17	88.37/88.48	95.99/93.84	89.55/88.11
Transformer6 _{max}	90.49/90.70	88.86/88.99	96.33/95.28	90.01/89.45
$ReCAT_{share}[3, 1, 3]$	95.03/94.78	92.73/92.79	98.49/98.47	93.99/92.74
Transformer9 _{mean}	90.37/89.27	88.46/88.77	96.21/92.98	89.37/88.09
Transformer9 _{max}	90.93/90.28	89.00/89.12	96.49/95.92	90.32/89.38
$ReCAT_{noshare}[3, 1, 3]$	94.84/94.18	92.86/93.01	98.56/98.58	94.06/93.19
For Reference				
BERT _{mean}	96.49/95.77	93.41/93.49	98.31/97.91	95.63/95.58
BERT _{max}	96.61/96.17	93.48/93.60	98.35/98.38	95.71/96.00

Table 2: Dev/Test performance for four span-level tasks on Ontonotes 5.0. All tasks are evaluated using F1 score. All models except BERT are pre-trained on wiki103 with the same setup.

Experiment results (GLUE)

System	natural language inference		single-sentence		sentence similarity		
	MNLI-(m/mm)	RTE	QNLI	SST-2	CoLA	MRPC(f1)	QQP
Fast-R2D2	69.64/69.57	54.51	76.49	90.71	40.11	79.53	85.95
Fast-R2D2+Transformer	68.25/67.30	55.96	76.93	89.10	36.06	78.09	87.52
DIORA*+Transformer	68.87/68.35	55.56	77.23	88.89	36.58	78.87	86.69
Parser+Transformer	67.95/67.16	54.74	76.18	88.53	18.32	77.56	86.13
Transformer×3	69.20/69.90	53.79	72.91	85.55	30.67	78.04	85.06
Transformer×6	73.93/73.99	57.04	79.88	86.58	36.04	80.80	86.81
$ReCAT_{noshare}[1, 1, 3]$	72.77/73.59	54.51	73.83	84.17	23.13	79.24	85.02
ReCAT _{share w/o iter}	75.03/75.32	56.32	80.96	84.94	20.86	78.86	85.36
ReCAT _{share w/o NT}	74.24/74.06	55.60	80.10	85.89	28.36	79.03	85.98
ReCAT _{share w/o TFM}	68.87/68.24	_	_	83.94	_		_
$ReCAT_{share}[3, 1, 3]$	75.48/75.43	56.68	81.70	86.70	25.11	79.45	86.10
Transformer×9	76.01/76.47	56.70	83.20	86.92	36.89	79.71	88.18
$ReCAT_{noshare}[3, 1, 3]$	75.75/75.79	57.40	82.01	86.80	26.69	80.65	85.97
$ReCAT_{noshare}[3, 1, 6]$	76.33/77.12	56.68	82.04	88.65	35.09	80.62	86.82
For reference							
GumbelTree [†]	69.50/—	_	_	90.70	_		_
\mathbf{CRvNN}^{\dagger}	72.24/72.65	_	_	88.36	_		
Ordered Memory [†]	72.53/73.2	_	—	90.40	· <u> </u>	—	—

Table 3: Evaluation results on GLUE benchmark. The models with † are based on GloVe embeddings and their results are taken from Ray Chowdhury & Caragea (2023). The others are pre-trained on wiki103 with the same setups.

Experiment results (grammar induction)

	mem.	PTB
Model	cplx	$F_1(\mu)$
Fast-R2D2 $_{m=4}$	O(n)	57.22
$ReCAT_{share}[3, 1, 3]_{m=4}$	O(n)	56.07
$\text{ReCAT}_{\text{share}}[3, 1, 3]_{\text{m=2}}$	O(n)	55.11
$ReCAT_{noshare}[3, 1, 3]_{m=4}$	O(n)	65.00
$\text{ReCAT}_{\text{noshare}}[3, 1, 3]_{\text{m=2}}$	O(n)	64.06
ReCAT _{noshare w/o iter m=2}	O(n)	45.20
For Reference		
C-PCFG	$O(n^3)$	55.2†
NBL-PCFG	$O(n^3)$	60.4†
TN-PCFG	$O(n^3)$	64.1†
ON-LSTM	O(n)	47.7‡
S-DIORA	$O(n^3)$	57.6†
StructFormer	$O(n^2)$	54.0‡

Model	NNP	VP	NP	ADJP
Fast-R2D2	83.44	63.80	70.56	68.47
$\text{ReCAT}_{\text{share}}[3, 1, 3]_{m=2}$	77.22	67.05	66.53	69.44
$\text{ReCAT}_{\text{share}}[3, 1, 3]_{m=4}$	85.41	66.14	68.43	72.92
$\text{ReCAT}_{\text{noshare}}[3, 1, 3]_{\text{m=2}}$	80.36	64.38	80.93	80.96
$ReCAT_{noshare}[3, 1, 3]_{m=4}$	81.71	70.55	82.94	78.28

Table 4: Left table: F1 score of unsupervised parsing on PTB dataset. Values with † and ‡ are taken from Yang et al. (2022) and Shen et al. (2021) respectively.

Upper table: Recall of constituents.

Word-level: NNP (proper noun). Phrase-level: VP (Verb Phrase), NP (Noun Phrase), ADJP (Adjective Phrase).

NF (Nouil Fillase), ADJF (Adjective Fillase).

Samples of deduced trees can be found in Appendix A.7.