Does CLIP's generalization performance mainly stem from high train-test similarity?

Prasanna Mayilvahanan, Thaddäus Wiedemer, Evgenia Rusak, Matthias Bethge, Wieland Brendel

MPI-IS & University of Tübingen

April 19, 2024

Motivation

Radford et al. 2019

ImageNet Adversarial

Possible reasons (Fang et al 2022):

- Architecture
- Language supervision
- Zero-shot prediction
- Data distribution

Nearest neighbors visualized

ImageNet - R

Is CLIP doing well only because its training set has highly similar images to test sets?

Pruning highly similar images from LAION

		Top-1 Accuracy					
Dataset	Size	Val	Sketch	Α	R	V2	ON
OpenAI (Radford et al., 2021)	400 000 000	63.38	42.32	31.44	69.24	55.96	44.14
L-400M (Schuhmann et al., 2021)	413 000 000	62.94	49.39	21.64	73.48	55.14	43.94
L-200M	199 824 274	62.12	48.61	21.68	72.63	54.16	44.80
L-200M + IN-Train	200 966 589	68.66	50.21	23.33	72.9	59.7	43.99
— val-pruned	-377 340	68.62	49.58	23.47	72.74	59.47	45.08
- sketch-pruned	-8 <i>342 783</i>	68.34	44.78	22.7	69.35	59.52	44.12
– a-pruned	-138 852	68.85	50.25	22.99	72.44	60.05	44.43
– r-pruned	<i>-5 735 749</i>	68.71	46.92	23.44	69.48	59.6	45.08
– v2-pruned	-274 325	68.79	50.45	23.19	72.58	59.84	45.33
— objectnet-pruned	-266 025	68.75	50.14	22.70	72.82	59.37	43.73
\square combined-pruned	-12 352 759	68.05	44.12	22.15	67.88	58.61	44.39

Is CLIP doing well only because its training set has *highly similar* images to test sets? No, the dataset scale and diversity drives CLIP to learn generalizable representations.