

Compositional preference models for aligning LMs

Dongyoung Go
dongyoung.go@navercorp.com
@dongyoung4091

Germán Kruszewski german.kruszewski@naverlabs.com @germank

Marc Dymetman marc.dymetman@gmail.com @@MarcDymetman

: Tomek Korbak http://tomekkorbak.com

: Jos Rozen ; jos.rozen@naverlabs.com @@josrzn Problem: Aligning language models with human preferences

pretrained LM a(x)

preference data

Problem: Aligning language models with human preferences

The goal is to fine-tune a pretrained LM $\alpha(x)$, so that the fine-tuned LM $\pi(x)$ incorporates some preferences

Dominant approach: Reinforcement Learning from Human Feedback (RLHF)

NU/AN/ER L/AES Europs 3

Reinforcement Learning from Human Feedback

Step1. Training a preference model (PM) to predict human preference judgments

Reinforcement Learning from Human Feedback

Step2. Finetuning an LM to maximize the reward given by the PM.

Reinforcement Learning from Human Feedback

Step2. Finetuning an LM to maximize the reward given by the PM.

Limitation of standard PM

1. Susceptible to overfitting the preference dataset (Overoptimization)

Limitation of standard PM

2. Difficult to interpret and to oversee

Compositional Preference Model (CPM)

Simple yet effective framework for learning PM that is

- 1. More robust to overoptimization
- 2. More transparent and interpretable
- 3. More aligned with desired preference

by providing inductive bias from **human insight** combine with **LM capabilities**

Stepl. Feature Decomposition

Step2. Feature Scoring

Step3. Aggregation

Step 1: Feature decomposition

Step 2: Feature scoring

N/20/15 L/2(13)55 Europe 12

N/A// ER L/A/B/S Europa 13

Step 3: Aggregation

10/20/20/20/20 10/20/20/20 Europe 14

Why compositional preference models works this way?

Compositional preference model

CPMs are given the human prior knowledge about which features determine preferences

Standard preference model

RUZAN/15|R 12/22|E3|55 Europo 15

Why compositional preference models works this way?

Compositional preference model

CPMs are given the human prior knowledge about which features determine preferences

This provides interpretable inductive bias and limits their susceptibility to overfitting

Standard preference model

Experiment setting

Dataset: HH-RLHFdataset, SHP dataset

Features for CPM: 13 features (helpfulness, specificity, intent, factuality, easy-to-understand, relevance, readability, enough-detail, biased, fail-to-consider-individual-preferences, repetitive, fail-to-consider-context and too-long)

Model: Flan-T5-XL (3B parameters) for both of conventional PM and CPM feature extractor (GPT-3.5 is also explored for ablation)

Europe 17

Experiment - Robustness to Overoptimization

HH-RLHF dataset

SHP dataset

Experiment - Robustness to Overoptimization

Experiment - Robustness to Overoptimization

HH-RLHF dataset

SHP dataset

Experiment - Robustness to Overoptimization Same Model ! (Flan-T5)

HH-RLHF dataset

SHP dataset

128

Experiment - Alignment (LM evaluator, Claude-2)

Win Rate	HH-RLHF		SHP		
CPM-GPT-3.5	0.810	(.)	0.672	(.)	
CPM-Flan-T5	0.742 (0.0)34)	0.580 (0.	.045)	
Standard PM	0.588 (0.0)30)	0.564 (0.	.037)	

Table: Win rate over initial generation after BoN sampling based on each PM. Except CPM-GPT-3.5, we independently conduct 10 rounds of BoN(n = 16) samplings and report the average win rate along with standard error. Experiment - Alignment (LM evaluator, Claude-2)

Win Rate	HH-RLHF	SHP
CPM-GPT-3.5	0.810 (.)	0.672 (.)
CPM-Flan-T5	0.742 (0.034)	0.580 (0.045)
Standard PM	0.588 (0.030)	0.564 (0.037)

Table: Win rate over initial generation after BoN sampling based on each PM. Except CPM-GPT-3.5, we independently conduct 10 rounds of BoN(n = 16) samplings and report the average win rate along with standard error.

prior knowledge injected into a CPM is robustly helpful for learning human preferences!

Experiment - Model Interpretability

		Features			
Dialogue	helpfulness	readability	enough-detail	factuality	fail-to-consider- context
Q: What things can I create with java programming?					
R1: Java is a programming language that is designed to create applications that run on a computer.	1.209	0.559	0.913	1.690	2.117
R2: Robots	0.509	0.559	-0.075	-0.569	-0.239
Q: Why is Lucifer referred to as the "morning star"?					
R1: Lucifer is the Morning Star because it is the brightest star in the sky.	1.209	0.880	1.901	0.843	0.232
R2: angel	-0.890	0.239	-0.569	-0.851	-0.239
Q: I'd like to evaluate some art perhaps. Can you tell me some history about Mona Lisa, the painting?					
R1: The Mona Lisa is a famous painting in the Louvre, Paris, France. It is attributed to Leonardo da Vinci.	1.909	0.880	1.901	1.690	2.588
R2: It was painted by Gian Lorenzo da Sica in the late 18th century. The name of the painting is inspired by					
the story of the famous Italian painter Leonardo da Vinci. The painting has been described as having a	0.859	0.239	1.901	0.278	-0.239
"poetic" quality.					

Pre-selected features are easily interpretable by its definition!

Experiment - Model Interpretability

		Features			
Dialogue	helpfulness	readability	enough-detail	factuality	fail-to-consider- context
Q: What things can I create with java programming?					
R1: Java is a programming language that is designed to create applications that run on a computer.	1.209	0.559	0.913	1.690	2.117
R2: Robots	0.509	0.559	-0.075	-0.569	-0.239
Q: Why is Lucifer referred to as the "morning star"?					
R1: Lucifer is the Morning Star because it is the brightest star in the sky.	1.209	0.880	1.901	0.843	0.232
R2: angel	-0.890	0.239	-0.569	-0.851	-0.239
Q: I'd like to evaluate some art perhaps. Can you tell me some history about Mona Lisa, the painting?					
R1: The Mona Lisa is a famous painting in the Louvre, Paris, France. It is attributed to Leonardo da Vinci.	1.909	0.880	1.901	1.690	2.588
R2: It was painted by Gian Lorenzo da Sica in the late 18th century. The name of the painting is inspired by					
the story of the famous Italian painter Leonardo da Vinci. The painting has been described as having a	0.859	0.239	1.901	0.278	-0.239
"poetic" quality.					

Pre-selected features are trivially interpretable by its definition!

Experiment - Scaling law

Gradually increase this size from Flan-T5 "small" (80M) to "XL" (3B)

Experiment - Scaling law

Gradually increase this size from Flan-T5 "small" (80M) to "XL" (3B)

Win rate steadily improve with increasing LM size

CPMs can become even more useful as extractor LMs become more capable

Conclusion

- Intricacy of feature extraction can be delegated to LLM
- Human prior can be used to guide the feature dimension
- CPM is interpretable, robust and overseeable PM
- Potential for the scalable oversight of models with superhuman capabilities.

Europe University of Sussex

Dongyoung Go dongyoung.go@navercorp.com 💽 @dongyoung4091

Germán Kruszewski https://germank.github.io 😏 @germank

Marc Dymetman marc.dymetman@gmail.com 🕥 @MarcDymetman

Jos Rozen jos.rozen@naverlabs.com 😏 @josrzn