

# VFLAIR: A RESEARCH LIBRARY AND BENCHMARK FOR VERTICAL FEDERATED LEARNING

Tianyuan Zou, Zixuan Gu, Yu He, Hideaki Takahashi, Yang Liu\*, Ya-Qin Zhang

\* Corresponding Author: Yang Liu (liuy03@air.tsinghua.edu.cn).



## VFL Background

• VFLAIR Design

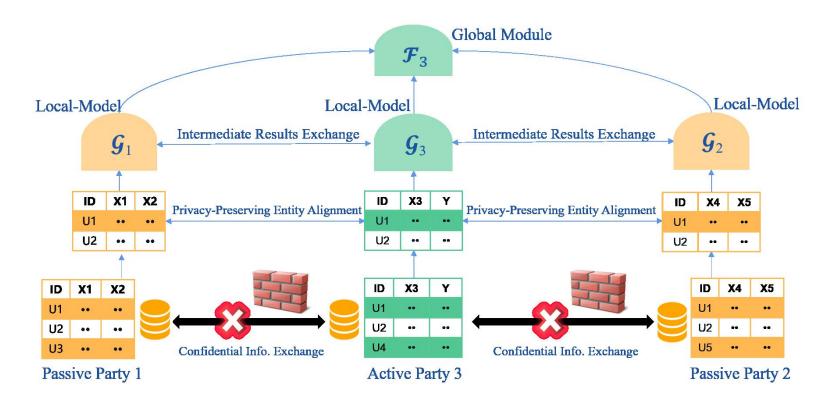
Outline

- VFLAIR Highlights
  - Comprehensive Evaluation of VFL Settings
  - Comprehensive Evaluation of 11 Attacks and 8 Defenses
  - Novel Evaluation Metric: Defense Capability Score
  - Additional Insights
- Comprehensive User Guidance and Documentation

## **Background: Vertical Federated Learning (VFL)**



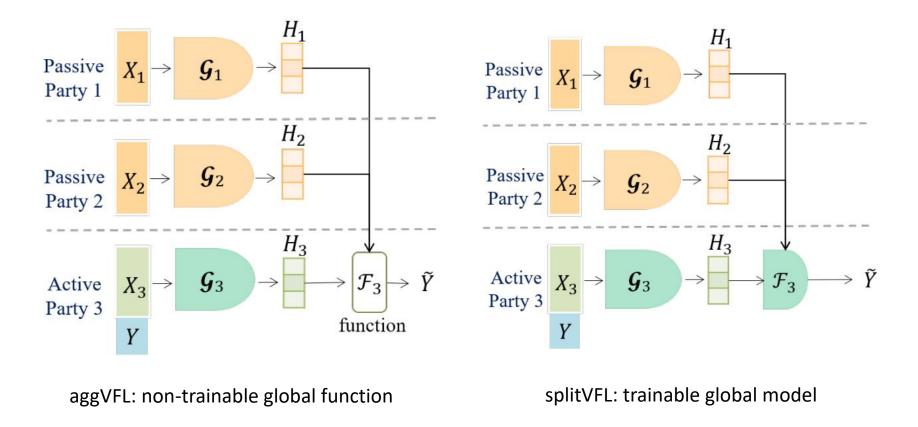
- In VFL, each of the <u>K</u> participating parties keeps its private data X<sub>k</sub> and private model G<sub>k</sub> local but exchanges intermediate computed results, including local model outputs H<sub>k</sub> and their gradients. The only party that controls the private label information (active party) additionally controls the global model F<sub>K</sub>. <sup>[1]</sup>
  - After training, each party in the VFL owns the separate **private local model** G<sub>k</sub>.
  - During inference, parties in VFL collaborate to make inferences.



## **Background: Vertical Federated Learning (VFL)**



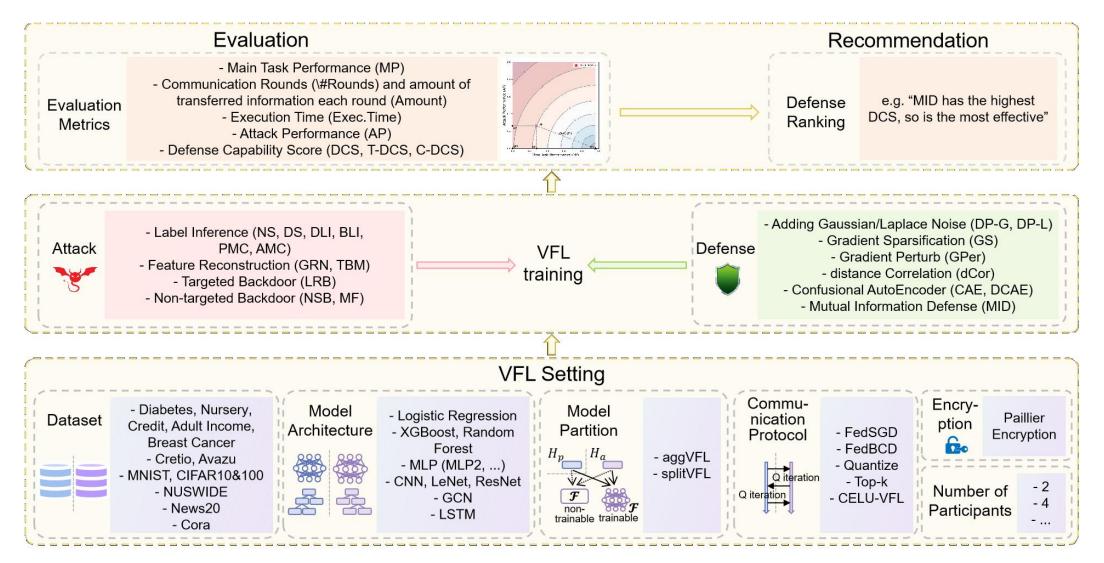
 Depending on how the model is partitioned among active and passive parties, VFL can be further divided into aggVFL and splitVFL in which a non-trainable global function or a trainable global model is used at the active party. <sup>[1]</sup>



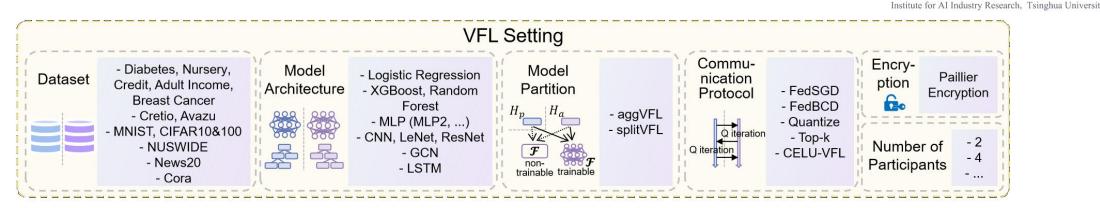




## An Extensible and Lightweight VFL Research Library



## Highlight #1: Comprehensive Evaluation of VFL Settings



Evaluted settings include (each can be user-defined):

- 13 datasets
  - including 4 real world dataset (Criteo, Avazu, Cora and News20-S5)
- 20+ model architectures
  - including LR, tree, random forest and NN
- 2 partition settings
  - aggVFL and splitVFL
- 5 communication protocols
- FedBCD, FedSGD, Quantize, Top-k and CELU-VFL
- 1 encryption technique
  - Paillier Encryption
- 2 kinds of number of participants
  - 2-party and 4-party

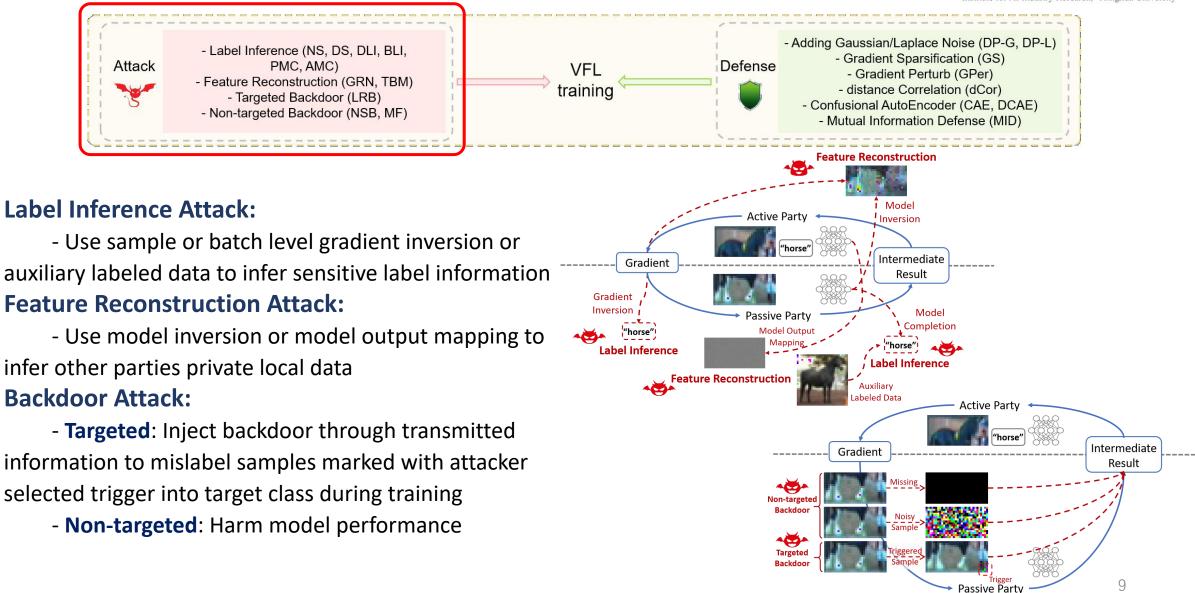
Table 3: MP under 4 different settings of NN-based VFL. Q = 5 when FedBCD is applied. In "#Rounds" column, the first and second numbers are the communication rounds needed to reach the specified MP for FedSGD and FedBCD respectively.

| Dataset       | aggVFL, FedSGD    | aggVFL, FedBCD    | #Rounds | splitVFL, FedSGD    | splitVFL, FedBCD  | #Rounds |
|---------------|-------------------|-------------------|---------|---------------------|-------------------|---------|
| MNIST         | 0.972±0.001       | $0.971 \pm 0.001$ | 150/113 | 0.973±0.001         | 0.974±0.001       | 180/143 |
| NUSWIDE       | $0.887 \pm 0.001$ | $0.882 \pm 0.001$ | 60/26   | $0.888 {\pm} 0.001$ | $0.884 \pm 0.001$ | 60/29   |
| Breast Cancer | $0.914 \pm 0.033$ | 0.919±0.029       | 5/3     | 0.925±0.028         | 0.907±0.045       | 5/4     |
| Diabetes      | $0.755 \pm 0.043$ | $0.736 \pm 0.021$ | 15/13   | 0.766±0.024         | 0.746±0.039       | 15/11   |
| Adult Income  | $0.839 \pm 0.006$ | $0.841 \pm 0.005$ | 17/15   | $0.842 \pm 0.004$   | 0.842±0.005       | 30/13   |

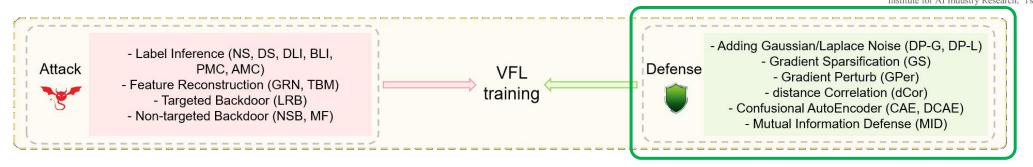
Table 5: MP and execution time under 2 different types of tree-based VFL.

| Dataset |               | Random Forest<br>w/o Encryption | XGBoost<br>w/o Encryption | Random Forest<br>w/ Encryption | XGBoost<br>w/Encryption<br>(a.k.a. SecureBoost) |
|---------|---------------|---------------------------------|---------------------------|--------------------------------|-------------------------------------------------|
| Credit  | MP            | $0.816 {\pm} 0.005$             | $0.816 \pm 0.004$         | $0.816 \pm 0.005$              | $0.816 \pm 0.004$                               |
| Ciedit  | Exec.Time [s] | 138±4                           | $366 \pm 16$              | $410 \pm 10$                   | $881\pm6$                                       |
| Nursery | MP            | $0.884 \pm 0.010$               | 0.890±0.011               | $0.884 \pm 0.010$              | $0.890 \pm 0.011$                               |
| ruisery | Exec.Time [s] | $29\pm2$                        | 69±4                      | 243±5                          | $1194\pm 21$                                    |

## Highlight #2: Comprehensive Evaluation of 11 Attacks and 8 Defenses 済寒大学智能产业研究院



## Highlight #2: Comprehensive Evaluation of 11 Attacks and 8 Defenses 済軍大学智能产业研究院



#### 8 kinds of non-cryptography defense techniques:

- 1. Defend by reduce information:
  - Add random noise<sup>[1]</sup>
    - Gaussian noise (DP-G)
    - Laplace noise (DP-L)
  - Gradient Sparsification (GS)<sup>[2]</sup>

- 2. Emerging defense methods:
  - Achieve label-DP by Gradient Perturb (GPer) [3]
  - Disguise label (CAE, DCAE)<sup>[4]</sup>
  - Distance Correlation Regularization (dCor)<sup>[5]</sup>
  - Mutual Information Regularization (MID)<sup>[6]</sup>

[1] C. Dwork. Differential privacy. In Proceedings of the 33rd International Conference on Automata, Languages and Programming, 2006.

[2] A. F. Aji et al. Sparse communication for distributed gradient descent. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017.

[3] X. Yang et al. Differentially private label protection in split learning. arXiv preprint, 2022.

[4] T. Zou et al. Defending batch-level label inference and replacement attacks in vertical federated learning. IEEE Transactions on Big Data, 2022.

[5] J. Sun et al. Label leakage and protection from forward embedding in vertical federated learning. arXiv preprint, 2022.

[6] T. Zou et al. Mutual information regularization for vertical federated learning. arXiv preprint, 2023.

#### Highlight #2: Comprehensive Evaluation of 11 Attacks and 8 Defenses 済軍大学智能产业研究院 Institute for Al Industry Research, Tsinghua University

#### - Attacks pose great threat to VFL.

- Black squares in each sub-figure

- DS, DLI, BLI and TBM attacks are strong attacks.

# Defenses exhibit trade-offs between main task performance (MP) and attack performance (AP).

- Trade-off can be controlled by adjusting defense hyper-parameters.

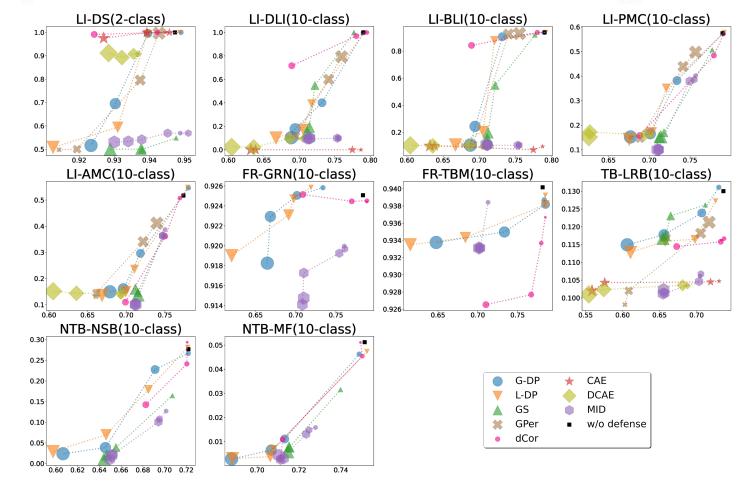
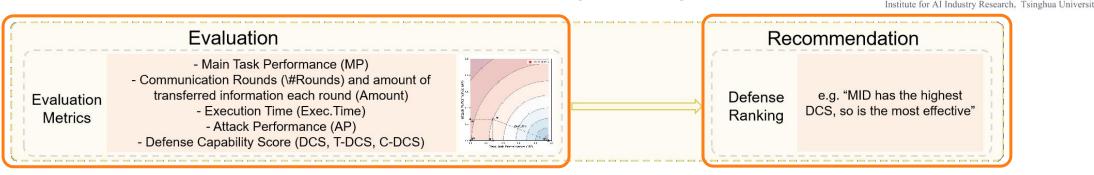


Figure 3: MPs and APs for different attacks under defenses [CIFAR10 dataset, aggVFL, FedSGD]

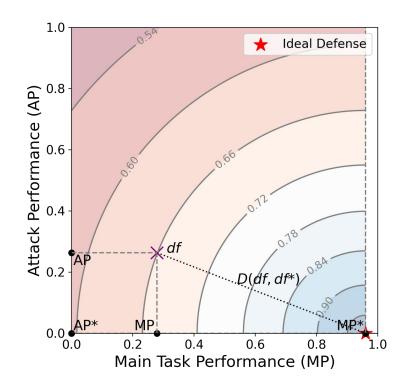
## Highlight #3: Novel Evaluation Metric: Defense Capability Score



#### **Evaluation Metrics**

- 1. Main Task Performance (MP)
- 2. Communication efficiency (till reaching the target training MP)
  - Required communication rounds (#Rounds)
  - Amount of transferred information each round (Amount)
- 3. Computation efficiency (till reaching the target training MP)
  - Execution Time (Exec. Time)
- 4. Attack Performance (AP)
  - Label Inference: ratio of corretly inferred label
  - Feature Reconstruction: negative MSE of real and inferred feature
  - Targeted Backdoor: successful rate of backdoor
  - Non-targeted Backdoor: decrease of MP
- 5. Defense Capability Score (DCS): considering both MP and AP

$$DCS = \frac{1}{1 + D(df, df^*)} = \frac{1}{1 + \sqrt{(1 - \beta)(AP - AP^*)^2 + \beta(MP - MP^*)^2}}$$



### Highlight #3: Novel Evaluation Metric: Defense Capability Score



- DCS rankings are consistent across various datasets and settings.
- Change in  $\beta$  does not significantly impact the C-DCS ranking.
  - This demonstrates the stableness of the comparison results among various defenses.
- MID, L-DP and G-DP are effective on a wide spectrum of attacks.
  - MID ranks the highest, followed by DP for all datasets.

| Defense<br>Name | Defense<br>Parameter | $T$ - $DCS_{LI_2}$ | $T$ - $DCS_{LI_5}$ | $T$ - $DCS_{LI}$ | $T$ - $DCS_{FR}$ | $T$ - $DCS_{TB}$ | $T$ - $DCS_{NTB}$ | C-DCS  |
|-----------------|----------------------|--------------------|--------------------|------------------|------------------|------------------|-------------------|--------|
| MID             | 10000                | 0.7358             | 0.8559             | 0.8159           | 0.5833           | 0.7333           | 0.8707            | 0.7508 |
| MID             | 1.0                  | 0.7476             | 0.8472             | 0.8140           | 0.5833           | 0.7331           | 0.8700            | 0.7501 |
| MID             | 100                  | 0.7320             | 0.8536             | 0.8130           | 0.5833           | 0.7326           | 0.8711            | 0.7500 |
| G-DP            | 0.1                  | 0.7375             | 0.8262             | 0.7966           | 0.5863           | 0.7282           | 0.8675            | 0.7447 |
| L-DP            | 0.1                  | 0.7389             | 0.8177             | 0.7915           | 0.5863           | 0.7258           | 0.8603            | 0.7410 |
| MID             | 0.1                  | 0.7516             | 0.8259             | 0.8011           | 0.5833           | 0.7172           | 0.8563            | 0.7395 |
| MID             | 0.01                 | 0.7280             | 0.8092             | 0.7822           | 0.5844           | 0.7151           | 0.8627            | 0.7361 |
| dCor            | 0.3                  | 0.7641             | 0.8411             | 0.8155           | 0.5834           | 0.7289           | 0.8051            | 0.7332 |
| dCor            | 0.0001               | 0.6496             | 0.6340             | 0.6392           | 0.5864           | 0.6307           | 0.8287            | 0.6712 |
| GS              | 99.0                 | 0.7404             | 0.8060             | 0.7841           | -                | 0.6415           | 0.8408            | -      |
| CAE             | 1.0                  | 0.6863             | 0.7822             | 0.7502           | -                | 0.6830           | 144               |        |
| DCAE            | 0.0                  | 0.6669             | 0.8660             | 0.7996           | -                | 0.6816           |                   | -      |
| GPer            | 0.01                 | 0.7386             | 0.8412             | 0.8070           | -                | 0.7193           | -                 | -      |

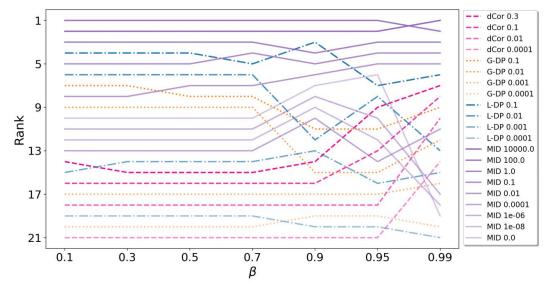
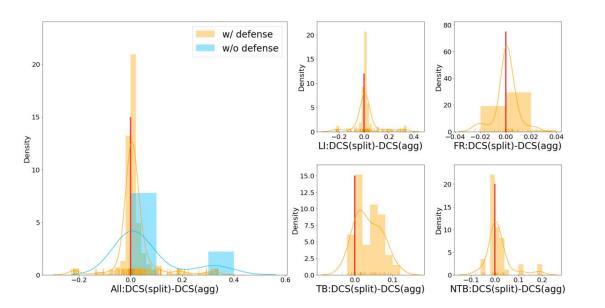


Figure 4: Change of C-DCS ranking with the change of  $\beta$ . [MNIST dataset, aggVFL, FedSGD]

Table 8: T-DCS and C-DCS for All Defenses [NUSWIDE dataset, aggVFL, FedSGD]

## Highlight #4: Additional Insights





#### - splitVFL is less vulnerable to attacks than aggVFL.

Figure 5: DCS gap Distribution, y-axis represents density [MNIST dataset, splitVFL/aggVFL, FedSGD]

#### - FedBCD is less vulnerable to attacks than FedSGD.

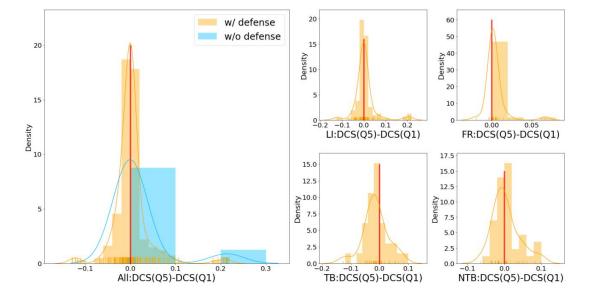


Figure 6: DCS gap Distribution, y-axis represents density [MNIST dataset, aggVFL, FedBCD/FedSGD]

## **Comprehensive User Guidance and Documentation**



- User guidance is included in the appendix of the paper.

| Build           | Prepare                   | Configure                                 | Train                                               | Evaluate                              |
|-----------------|---------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------|
|                 | Dataset                   | - hyper-parameters                        | train with                                          |                                       |
| download code   | i i<br>i download realted | - dataset                                 | command python                                      | use ./src/metrics/da                  |
| from GitHub     | download realted          | · · model                                 | <u>main_pipeline.py</u><br><u>configs my_config</u> | ta_process.ipynb                      |
| install all the | <b>H</b>                  | protocol                                  |                                                     | file for calculating<br>DCS,T-DCS and |
| necessarily     | i place it under          | i i - number of                           | MP,AP,                                              | C-DCS.                                |
| requirement     | folder<br>                | participants  <br>    - attacks & defense | communication<br>cost & rounds,                     |                                       |
|                 |                           | - encryption                              | execution time                                      |                                       |
|                 |                           | i i i                                     | recorded                                            | i                                     |

Figure 8: Step-by-step user guidance for using VFLAIR.

- Documentation is provided in the README.md file in our github https://github.com/FLAIR-THU/VFLAIR.



# Thanks !

2024-4-18