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MPNN for Link Prediction

Vanilla MPNN fails in this task

• Learns node representation only.

• Cannot distinguish (v1, v2) and (v1, v3).

Structural feature like number of common neighbor can help.
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Structure Feature cannot Capture Node Feature

Commonly structure features
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• unlearnable
• unable to capture node feature

Cannot distinguish (v1, v2) and (v1, v3).3/13
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New Architecture

Structural features (SF) like common neighbor are widely used.
• Existing works utilize SF in two ways.

• SF-then-MPNN. Take SF as MPNN’s input
• Low scalability, need to rerun MPNN as the SF changes with target link.

• SF-and-MPNN. Ensemble MPNN with SF.
• MPNN and SF are completely separated. Low expressivity.

• We use SF to guide the pooling of MPNN’s output (MPNN-then-SF).
• Good scalability and expressivity.

MPNN SF-then-MPNNSF𝐴 𝐴

MPNN

SF
𝐴 𝐴 SF-and-MPNN

SF MPNN-then-SFMPNN𝐴 𝐴
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Connection to Previous Work
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Higher-order neighbors and neighborhood differences lead to negligible
performance gain, leading to our NCN model:

NCN(i , j ,A,X ) =
∑

u∈N(i)∩N(j)

MPNN(u,A,X ) (4)
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Incompleteness Visualization

Incompleteness of graph is ubiquitous in link prediction tasks.
• The target edge exists in input graph on training set but not on test set.

Besides the target edge, other edges, like those connected to common neighbors,
is also affected.
To visualize it, we assume that

• Graph with training set edges only is the incomplete graph.
• Graph with training, validation and test set edges is the complete graph.
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Figure: Ogbl-collab dataset (a) distribution of common neighbor (b) performance of
common neighbor 6/13
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Incompleteness Visualization: Distribution Shift
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• blue and green lines in (a): a significant distribution shift between the
training and test sets in the incomplete graph of the ogbl-collab dataset.

• red and orange lines: shift disappears when the graph is complete.

Distribution shifts can enlarge the gap between training and test error.
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Incompleteness Visualization: Loss of Common Neighbor
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• Blue and green lines in (a): there are fewer common neighbors in the
incomplete graph.

Loss of Common Neighbor Information can lead to high training error and thus
high test error.

8/13



Xiyuan Wang,
Haotong Yang,
Muhan Zhang

Neural Common
Neighbor

Completion for
Input Graph

Experiments

Incompleteness Visualization: Performance Degradation
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• (b): Imcompleteness of non-target links leads to significant performance
degradation.
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Common Neighbor Completion

Due to imcompleteness, NCN can use not only the common neighbors in the
input graph. It can also predict unobserved common neighbors.
Given a target link (i , j), the probability that u is a common neighbor of (i , j) is

Puij =


1 if u∈N(i ,A) ∩ N(j ,A)

σ(NCN(i , u,A,X )) if u∈ N(j ,A)−N(i ,A)

σ(NCN(j , u,A,X )) if u∈N(i ,A)−N(j ,A)

0 otherwise

(5)

NCN with Completion (NCNC) becomes

NCNC(i , j ,A,X ) =
∑
u∈V

PuijMPNN(u,A,X ). (6)
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Link Prediction

Cora Citeseer Pubmed Collab PPA Citation2 DDI

Metric HR@100 HR@100 HR@100 HR@50 HR@100 MRR HR@20

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 27.65±0.00 51.47±0.00 17.73±0.00

AA 39.85±1.34 35.19±1.33 27.38±0.11 64.35±0.00 32.45±0.00 51.89±0.00 18.61±0.00

RA 41.07±0.48 33.56±0.17 27.03±0.35 64.00±0.00 49.33±0.00 51.98±0.00 27.60±0.00

GCN 66.79±1.65 67.08±2.94 53.02±1.39 44.75±1.07 18.67±1.32 84.74±0.21 37.07±5.07

SAGE 55.02±4.03 57.01±3.74 39.66±0.72 48.10±0.81 16.55±2.40 82.60±0.36 53.90±4.74

SEAL 81.71±1.30 83.89±2.15 75.54±1.32 64.74±0.43 48.80±3.16 87.67±0.32 30.56±3.86

NBFnet 71.65±2.27 74.07±1.75 58.73±1.99 OOM OOM OOM 4.00±0.58

NeoGNN 80.42±1.31 84.67±2.16 73.93±1.19 57.52±0.37 49.13±0.60 87.26±0.84 63.57±3.52

BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 65.94±0.58 49.85±0.20 87.56±0.11 78.51±1.36

NCN 89.05±0.96 91.56±1.43 79.05±1.16 64.76±0.87 61.19±0.85 88.09±0.06 82.32±6.10

NCNC 89.65±1.36 93.47±0.95 81.29±0.95 66.61±0.71 61.42±0.73 89.12±0.40 84.11±3.67

11/13



Xiyuan Wang,
Haotong Yang,
Muhan Zhang

Neural Common
Neighbor

Completion for
Input Graph

Experiments

Ablation Study

Cora Citeseer Pubmed Collab PPA Citation2 DDI

Metric HR@100 HR@100 HR@100 HR@50 HR@100 MRR HR@20

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 27.65±0.00 51.47±0.00 17.73±0.00

GAE 89.01±1.32 91.78±0.94 78.81±1.64 36.96±0.95 19.49±0.75 79.95±0.09 61.53±9.59

GAE+CN 88.61±1.31 91.75±0.98 79.04±0.83 64.47±0.14 51.83±0.58 87.81±0.06 80.71±5.56

NCN2 88.87±1.34 91.36±1.02 80.21±0.78 65.43±0.46 OOM OOM OOM
NCN-diff 89.12±1.04 91.96±1.23 80.28±0.88 64.08±0.40 57.86±1.26 86.68±0.16 17.67±8.70

NCN 89.05±0.96 91.56±1.43 79.05±1.16 64.76±0.87 61.19±0.85 88.09±0.06 82.32±6.10

NoTLR 85.46±1.65 88.08±1.23 76.59±1.33 64.22±0.49 60.66±0.63 88.64±0.14 66.52±11.37

NCNC 89.65±1.36 93.47±0.95 81.29±0.95 66.61±0.71 61.42±0.73 89.12±0.40 84.11±3.67

NCNC-2 89.14±0.84 93.14±0.96 81.41±1.07 66.80±0.43 > 24h > 24h > 24h
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Scalability Comparison
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Figure: Inference time and GPU memory on ogbl-collab. The process we measure includes
preprocessing and predicting one batch of test links. Relation between time y and batch
size t is y = B + Ct, where B,C are model specific constants. SEAL has out-of-memory
problem and only uses small batch sizes.
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