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GAN-based Image-to-Image Translation Model

* (:generator

e D: discriminator

e x:an image from the source domain
« y:an image from the target domain

Obijective:
minmaxV (G,D) = E, [logD(y)] + E, , [log(1 — D(G(x)))]

G D
= E,[log(D(y) — 0)] + Ey, [log(1 - D@))]

Q"q,; ; .l'!’. 1 Brunel.
L\ g | University
London




L .
Motivation: Poor Noise Robustness
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Method: Noise Injection
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 I—
Theoretical Analysis: Problem Formulation

 How does the variance of Gaussian noise used in training affect the
difference between the real and generated distributions?

 How does the presence of Gaussian noise in training data influence
the model's ability to handle unseen noise during inference?

« Is it possible to identify an optimal noise intensity during training that
guarantees consistent performance across diverse noise intensities
during inference?
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Theoretical Analysis: f Divergence

Theorem 1. Ler Px y and Q)x,y be two joint distributions on X X ) representing real data and

the data generated by a model, respectively. Define X = X + ocIN, where N ~ N(0,1;) is

standard d-dimensional isotropic Gaussian noise. Let Px y and () ¢ y represent the corresponding
k) b

distributions after Gaussian noise injection with their respective probability densities p(Z.y) and
q(x,y). For the generator function f, ifits second order derivative f" existsand Dy (Px,y || Qx,y)

is finite, then Dy (Px y || Qx.y) satisfies
d _ - 1
@DI (Pxy | Qxy) = _iﬁf(gg)a (1)

in which n¢(o?) represents the weighted mean square error between two score functions

2N B ﬁ(:ﬁy) 1 ﬁ(:ﬁy) oo o( . oo gl 2
150 = Epg , { B2 1 (B30 Vo logp(a,y) - Ve loza@ )’} @

where V z log p(Z,y) and V z log G(&, y) are the score functions of p(Z,y) and q(&,y), respectively.

Unveils how the rate of change of Dy(P || Q) concerning o is portrayed through n;(c*)!
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Theoretical Analysis: f Divergence

For small ¢ = o, a Taylor series expansion yields:

Dr(Pxy Il Qxy) =|Df(Px+ony Il Qxsoony)|+ 777f(0-t2) +o(of)

Minimizing divergence between p(x + o;N,y) and q(x + o;N, y) Tends to decrease

Hence, by injecting Gaussian noise with small 67 and aligning the noise-
perturbed distributions during training, the model

* be quided to align the original, noise-free distributions as well
* results in a coherent 2] translation
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Theoretical Analysis: Mismatched Noisy Inputs
Gaussian source

Theorem 2. Consider the KL-divergences denoted by p(c?,X.) in (6) for general noise, and

pg(af, 3.) in (7) for Gaussian noise. Under these definitions, the following properties hold:

[. Let 22, = 22~ in which 2z is normm’i zed covariance matrix with Tr(Eg) = d. Then,
p(o?. ngg) is convex with respect to o2. Additionally, for small o2 with 02 < 1, the
following approximation is valid:

p(07,0:8e) = pg(07,0.8e) + o(07). (8)

2. If ¥ > it + 14, the inequality p(of, X.) < p(0,X.) is satisfied.

Notation:

* X be d-dimensional random variable with normal distribution NV (ug, X)
« Training: X,Y = G(X) denote the training noisy counterparts(input and corresponding output)
« Inference: X =X+ E,Y = G(X) denote the inference noisy counterparts
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Theoretical Analysis: Mismatched Noisy Inputs
Non-Gaussian source

Theorem 3. Ler X be a d-dimensional random vector with an arbitrary probability distribution and
finite entropy h(X). Denote §(c?,02%z) = Di. (Px+ El|Pxio, N), where the definitions of E,

>z N o and o2 are the same as those in Theorem 2. Let 04(c?.02%z) denotes the special case of
0(c?, 02%5) H«hé’f}‘ E is Gaussian noise. Then,

1. For small o2 with 02 < 1,
0(cf,0e%e) = O4(07, 0e2z) + 0(07); ©)

2. When E is also iid Gaussian, 8,(c?,0%1;) = Dk, (IE’X+JEN\\PX+JtN) satisfies

d 1 o
@99(05-53&):Eﬁ(;ﬁ){—illvﬁalow(iﬂ)\\ + 5 V logp(x) - Vg log p(x )} (10)

c
Notation:
* X be d-dimensional random variable with an arbitrary probability distribution and finite entropy h(X)
« Training: X,Y = G(X) denote the training noisy counterparts(input and corresponding output)
« Inference: X =X+ E,Y = G(X) denote the inference noisy counterparts
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 I—
Theoretical Analysis: Training Noise Intensity

Given an i.i.d. Gaussian noise e with £, = 621, (0 < 02 < Apay), define o7, as the optimal
noise level that minimizes the worst-case KL distance p(c?, 021,)

o,

)

5 = argmin{ max p(atz,aezld)}
of (0<oi=<M

For this optimal level, it satisfies p(62,,04) = p(020, Amaxla)- Besides, if 62 is uniformly
distributed between 0 and A,,,«, the optimal training noise intensity 67, that minimizes the

average KL-divergence is %Amax, l.e.,
5 . s o 1
Oto = al'g Hélzn ]Eaez~1l(0,/1max) p(of,051)} = Eamax
t

Hence, this corollary offers a theoretically sound method for determining the optimal
training noise variance for an arbitrary type of i.i.d. inference noise.

Yo | Brunel
=22 | University
A London




Results

Clean Severity
= Input n AW AN AR 20 A Three GAN-based 12| models are used to verify
E -4 4 B4 BdBa . B°& our theoretical analysis
N
: paseline « Sketch Transformer[1] (Photo—Sketch)
3 - i
£ Noise  HiFaceGAN[2] (Face Super-Resolution)
Injection
.«  GP-UNIT[3] (Cat—Dog)
g
g Input
S
5
Qj Baseline
)
=3
- Noise
qgf Injection [1] Zhu, et al. “A sketch-transformer network for face photo-sketch synthesis.” IJCAI. 2021.
s [2] Yang, et al. “Hifacegan: Face renovation via collaborative suppression and
replenishment.” ACM MM. 2020.
[3] Yang, et al. “GP-UNIT: Generative prior for versatile unsupervised image-to-image
gt translation.” TPAMI. 2023
. Ay,
1 Baseline , A ) | \ ) :
'E; / K : y ] & X ] : - " L
O Aoy 1 1} L
. ~ 3 . | Brunel
InI]V:cl;fm : W “ m “ W ' e A University|
) Y 9 4 d 1 & London




Pg (‘71527 ngé)

Results e

Visualization p, (o7, 052;) for AR(1) signal
model with d = 256 and covariance matrix
(k)= 0.95p|""‘lI (for 0 < k,l < 255).

FID score comparison on noisy
inputs for models trained with
different Gaussian noise levels.
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Consistent trends!!!
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Thank You

More detalls + results in our paper!

Paper: https://openreview.net/forum?id=sLregLuXpn

Code: https://github.com/Alan0693/Noise-Injection
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