On the Analysis of GAN-based Image-to-Image Translation using Gaussian Noise Injection

Chaohua Shi¹, Kexin Huang², Lu Gan^{*,3}, Hongqing Liu⁴

Mingrui Zhu¹, Nannan Wang^{*,1}, Xinbo Gao¹

¹Xidian University ²National University of Defense Technology ³Brunel University ⁴Chongqing University of Posts Telecommunication

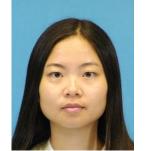
GAN-based Image-to-Image Translation Model

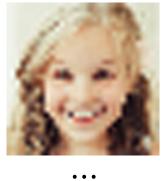
- G: generator
- D: discriminator
- *x*: an image from the source domain
- *y*: an image from the target domain

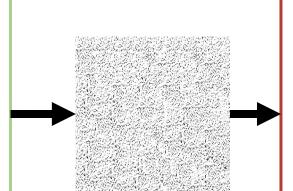
• Objective:

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{y}[\log D(y)] + \mathbb{E}_{x,y}[\log(1 - D(G(x)))]$$
$$= \mathbb{E}_{y}[\log(D(y) - 0)] + \mathbb{E}_{x,y}[\log(1 - D(\hat{y}))]$$

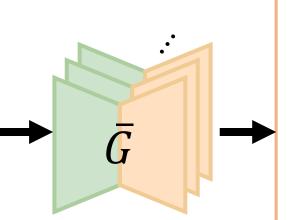
Motivation: Poor Noise Robustness





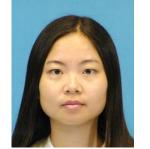


Noise Disturbance

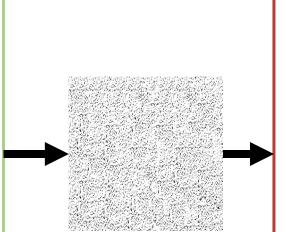


. . .

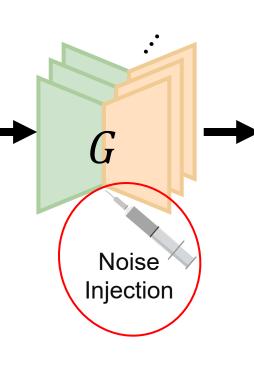
Motivation: Poor Noise Robustness





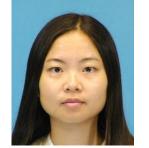


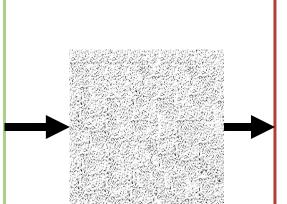
Noise Disturbance





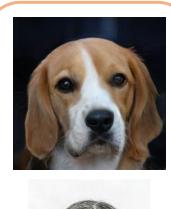
Motivation: Poor Noise Robustness





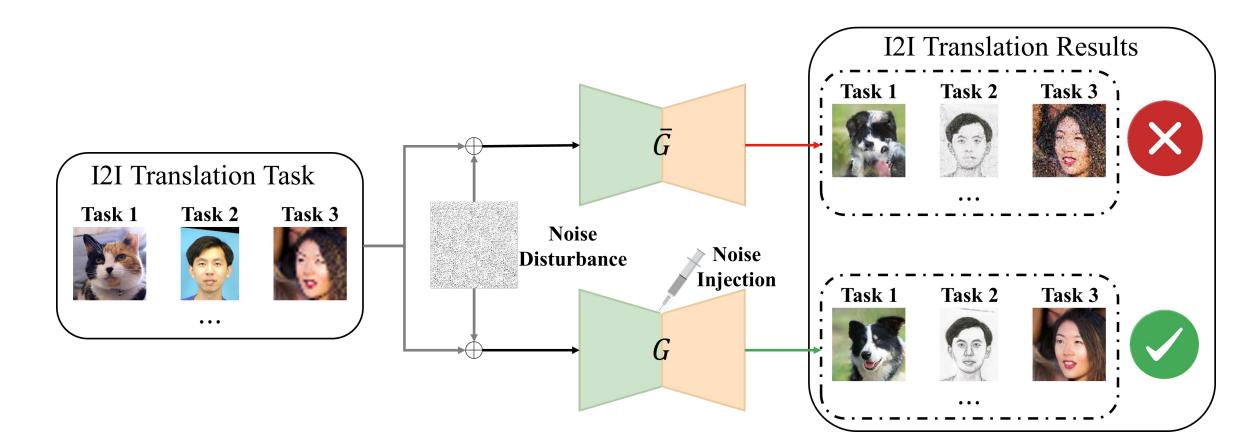
Noise Disturbance

G Noise Injection



. . .

Method: Noise Injection



Theoretical Analysis: Problem Formulation

- How does the variance of Gaussian noise used in training affect the difference between the real and generated distributions?
- How does the presence of Gaussian noise in training data influence the model's ability to handle unseen noise during inference?
- Is it possible to identify an optimal noise intensity during training that guarantees consistent performance across diverse noise intensities during inference?

Theoretical Analysis: *f* Divergence

Theorem 1. Let $P_{\mathbf{X},\mathbf{Y}}$ and $Q_{\mathbf{X},\mathbf{Y}}$ be two joint distributions on $\mathcal{X} \times \mathcal{Y}$ representing real data and the data generated by a model, respectively. Define $\bar{\mathbf{X}} = \mathbf{X} + \sigma \mathbf{N}$, where $\mathbf{N} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ is standard d-dimensional isotropic Gaussian noise. Let $\bar{P}_{\bar{\mathbf{X}},\mathbf{Y}}$ and $\bar{Q}_{\bar{\mathbf{X}},\mathbf{Y}}$ represent the corresponding distributions after Gaussian noise injection with their respective probability densities $\bar{p}(\bar{\mathbf{x}},\mathbf{y})$ and $\bar{q}(\bar{\mathbf{x}},\mathbf{y})$. For the generator function f, if its second order derivative f'' exists and $D_f(P_{\mathbf{X},\mathbf{Y}} \parallel Q_{\mathbf{X},\mathbf{Y}})$ is finite, then $D_f(\bar{P}_{\bar{\mathbf{X}},\mathbf{Y}} \parallel \bar{Q}_{\bar{\mathbf{X}},\mathbf{Y}})$ satisfies

$$\frac{\mathrm{d}}{\mathrm{d}\sigma^2} D_f \left(\bar{P}_{\bar{\boldsymbol{X}},\boldsymbol{Y}} \parallel \bar{Q}_{\bar{\boldsymbol{X}},\boldsymbol{Y}} \right) = -\frac{1}{2} \eta_f(\sigma^2), \tag{1}$$

in which $\eta_f(\sigma^2)$ represents the weighted mean square error between two score functions

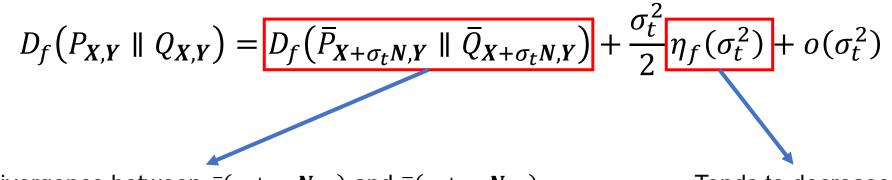
$$\eta_f(\sigma^2) = \mathbb{E}_{\bar{P}_{\bar{\boldsymbol{x}},\boldsymbol{Y}}} \left\{ \frac{\bar{p}(\bar{\boldsymbol{x}},\boldsymbol{y})}{\bar{q}(\bar{\boldsymbol{x}},\boldsymbol{y})} f''\left(\frac{\bar{p}(\bar{\boldsymbol{x}},\boldsymbol{y})}{\bar{q}(\bar{\boldsymbol{x}},\boldsymbol{y})}\right) \|\nabla_{\bar{\boldsymbol{x}}}\log\bar{p}(\bar{\boldsymbol{x}},\boldsymbol{y}) - \nabla_{\bar{\boldsymbol{x}}}\log\bar{q}(\bar{\boldsymbol{x}},\boldsymbol{y})\|^2 \right\}, \quad (2)$$

where $\nabla_{\bar{\boldsymbol{x}}} \log \bar{p}(\bar{\boldsymbol{x}}, \boldsymbol{y})$ and $\nabla_{\bar{\boldsymbol{x}}} \log \bar{q}(\bar{\boldsymbol{x}}, \boldsymbol{y})$ are the score functions of $\bar{p}(\bar{\boldsymbol{x}}, \boldsymbol{y})$ and $\bar{q}(\bar{\boldsymbol{x}}, \boldsymbol{y})$, respectively.

• Unveils how the rate of change of $D_f(\bar{P} \parallel \bar{Q})$ concerning σ^2 is portrayed through $n_f(\sigma^2)!$

Theoretical Analysis: *f* Divergence

For small $\sigma = \sigma_t$, a Taylor series expansion yields:



Minimizing divergence between $\bar{p}(x + \sigma_t N, y)$ and $\bar{q}(x + \sigma_t N, y)$

Tends to decrease

Hence, by injecting Gaussian noise with small σ_t^2 and aligning the noiseperturbed distributions during training, the model

- be guided to align the original, noise-free distributions as well
- results in a coherent I2I translation

Theoretical Analysis: Mismatched Noisy Inputs

Gaussian source

Theorem 2. Consider the KL-divergences denoted by $\rho(\sigma_t^2, \Sigma_e)$ in (6) for general noise, and $\rho_g(\sigma_t^2, \Sigma_e)$ in (7) for Gaussian noise. Under these definitions, the following properties hold:

1. Let $\Sigma_e = \sigma_e^2 \Sigma_{\tilde{e}}$, in which $\Sigma_{\tilde{e}}$ is normalized covariance matrix with $\operatorname{Tr}(\Sigma_{\tilde{e}}) = d$. Then, $\rho(\sigma_t^2, \sigma_e^2 \Sigma_{\tilde{e}})$ is convex with respect to σ_e^2 . Additionally, for small σ_e^2 with $\sigma_e^2 \ll 1$, the following approximation is valid:

$$\rho(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}}) = \rho_g(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}}) + o(\sigma_e^2).$$
(8)

2. If $\Sigma_e \geq \frac{\sigma_t^2}{2} I_d$, the inequality $\rho(\sigma_t^2, \Sigma_e) < \rho(0, \Sigma_e)$ is satisfied.

Notation:

- X be d-dimensional random variable with normal distribution $\mathcal{N}(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)$
- Training: \overline{X} , $\overline{Y} = G(\overline{X})$ denote the training noisy counterparts(input and corresponding output)
- Inference: $\hat{X} = X + E$, $\hat{Y} = G(\hat{X})$ denote the inference noisy counterparts
- Marginal distributions: $\bar{P}_{\bar{X}}$, $\hat{P}_{\hat{X}}$, $\bar{Q}_{\bar{Y}}$, $\hat{Q}_{\hat{Y}}$
- Joint distribution: $\bar{Q}_{\bar{X},\bar{Y}}$, $\hat{Q}_{\hat{X},\hat{Y}}$

Theoretical Analysis: Mismatched Noisy Inputs

Non-Gaussian source

Theorem 3. Let \mathbf{X} be a d-dimensional random vector with an arbitrary probability distribution and finite entropy $h(\mathbf{X})$. Denote $\theta(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}}) \triangleq D_{KL} \left(\hat{P}_{\mathbf{X}+\mathbf{E}} \| \bar{P}_{\mathbf{X}+\sigma_t \mathbf{N}} \right)$, where the definitions of \mathbf{E} , $\Sigma_{\widetilde{e}}$, \mathbf{N} , σ_t and σ_e^2 are the same as those in Theorem 2. Let $\theta_g(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}})$ denotes the special case of $\theta(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}})$ when \mathbf{E} is Gaussian noise. Then,

1. For small σ_e^2 with $\sigma_e^2 \ll 1$,

$$\theta(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}}) = \theta_g(\sigma_t^2, \sigma_e^2 \Sigma_{\widetilde{e}}) + o(\sigma_e^2); \tag{9}$$

2. When \boldsymbol{E} is also iid Gaussian, $\theta_g(\sigma_t^2, \sigma_e^2 \boldsymbol{I}_d) \triangleq D_{KL}\left(\hat{P}_{\boldsymbol{X}+\boldsymbol{\sigma_e}\boldsymbol{N}} \| \bar{P}_{\boldsymbol{X}+\boldsymbol{\sigma_t}\boldsymbol{N}}\right)$ satisfies

$$\frac{\mathrm{d}}{\mathrm{d}\sigma_e^2} \theta_g(\sigma_t^2, \sigma_e^2 \boldsymbol{I}_d) = \mathbb{E}_{\hat{p}(\hat{\boldsymbol{x}})} \left\{ -\frac{1}{2} \left\| \nabla_{\hat{\boldsymbol{x}}} \log \hat{p}(\hat{\boldsymbol{x}}) \right\|^2 + \frac{1}{2} \nabla_{\hat{\boldsymbol{x}}} \log \hat{p}(\hat{\boldsymbol{x}}) \cdot \nabla_{\bar{\boldsymbol{x}}} \log \bar{p}(\bar{\boldsymbol{x}}) \right\}$$
(10)

Notation:

- X be d-dimensional random variable with an arbitrary probability distribution and finite entropy h(X)
- Training: $\overline{X}, \overline{Y} = G(\overline{X})$ denote the training noisy counterparts(input and corresponding output)
- Inference: $\hat{X} = X + E$, $\hat{Y} = G(\hat{X})$ denote the inference noisy counterparts
- Marginal distributions: $\bar{P}_{\bar{X}}$, $\hat{P}_{\hat{X}}$, $\bar{Q}_{\bar{Y}}$, $\hat{Q}_{\hat{Y}}$
- Joint distribution: $\bar{Q}_{\bar{X},\bar{Y}}$, $\hat{Q}_{\hat{X},\hat{Y}}$

Theoretical Analysis: Training Noise Intensity

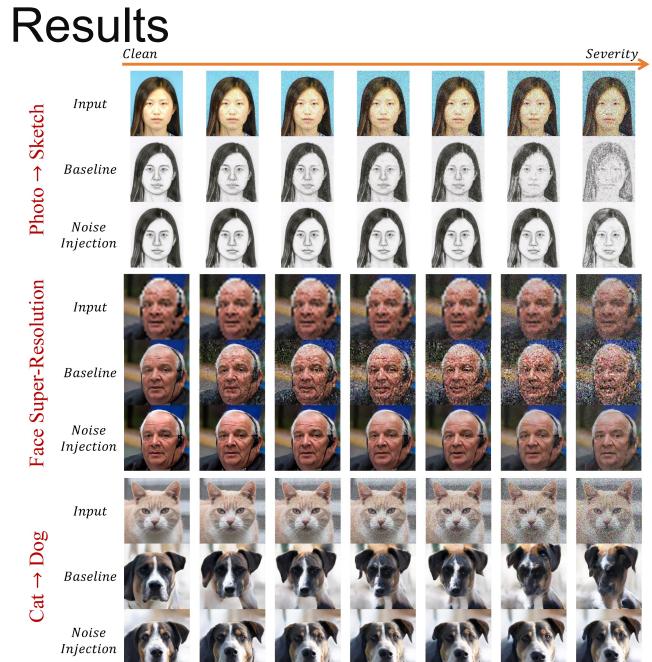
Given an i.i.d. Gaussian noise *e* with $\Sigma_e = \sigma_e^2 I_d$ ($0 \le \sigma_e^2 \le \lambda_{\max}$), define $\sigma_{t,o}^2$ as the optimal noise level that minimizes the worst-case KL distance $\rho(\sigma_t^2, \sigma_e^2 I_d)$

$$\sigma_{t,o}^2 = \arg\min_{\sigma_t^2} \left\{ \max_{0 \le \sigma_e^2 \le M} \rho(\sigma_t^2, \sigma_e^2 \boldsymbol{I}_d) \right\}$$

For this optimal level, it satisfies $\rho(\sigma_{t,o}^2, \mathbf{0}_d) = \rho(\sigma_{t,o}^2, \lambda_{\max} \mathbf{I}_d)$. Besides, if σ_e^2 is uniformly distributed between 0 and λ_{\max} , the optimal training noise intensity $\overline{\sigma}_{t,o}^2$ that minimizes the average KL-divergence is $\frac{1}{2}\lambda_{max}$, i.e.,

$$\bar{\sigma}_{t,o}^2 = \arg\min_{\sigma_t^2} \mathbb{E}_{\sigma_e^2 \sim \mathcal{U}(0,\lambda_{\max})} \{\rho(\sigma_t^2, \sigma_e^2 I_d)\} = \frac{1}{2} \lambda_{\max}$$

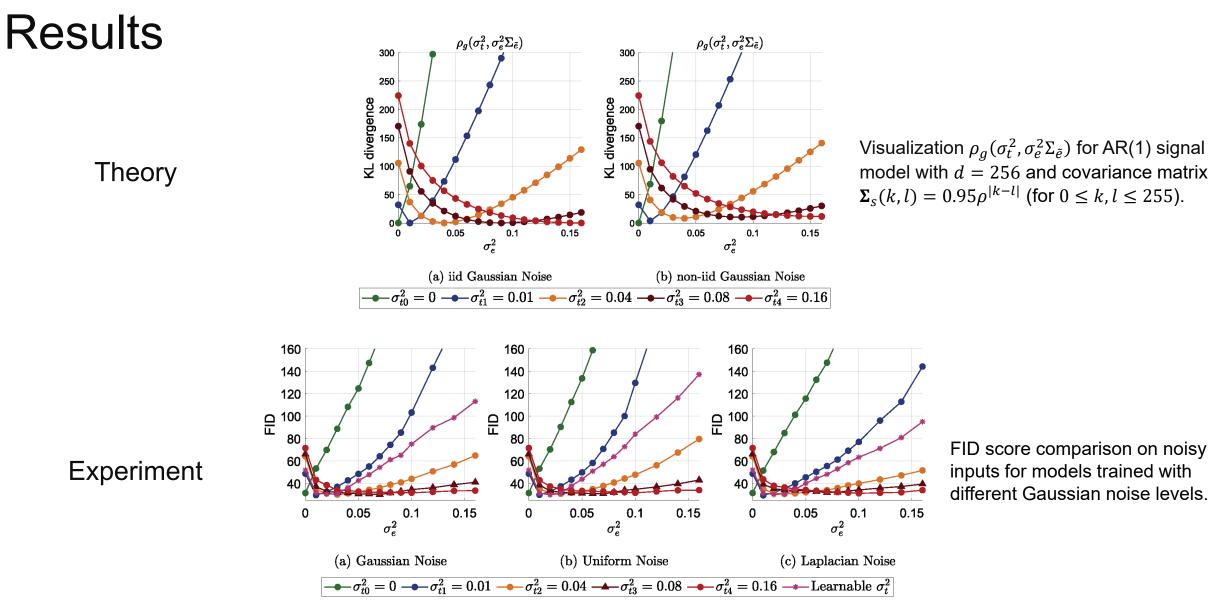
Hence, this corollary offers <u>a theoretically sound method for determining the optimal</u> training noise variance for an arbitrary type of i.i.d. inference noise.



Three GAN-based I2I models are used to verify our theoretical analysis

- Sketch Transformer[1] (Photo→Sketch)
- HiFaceGAN[2] (Face Super-Resolution)
- GP-UNIT[3] (Cat→Dog)

[1] Zhu, et al. "A sketch-transformer network for face photo-sketch synthesis." IJCAI. 2021.
[2] Yang, et al. "Hifacegan: Face renovation via collaborative suppression and replenishment." ACM MM. 2020.
[3] Yang, et al. "GP-UNIT: Generative prior for versatile unsupervised image-to-image translation." TPAMI. 2023



Consistent trends!!!

More details + results in our paper!

Paper: https://openreview.net/forum?id=sLregLuXpn

Code: <u>https://github.com/Alan0693/Noise-Injection</u>

