

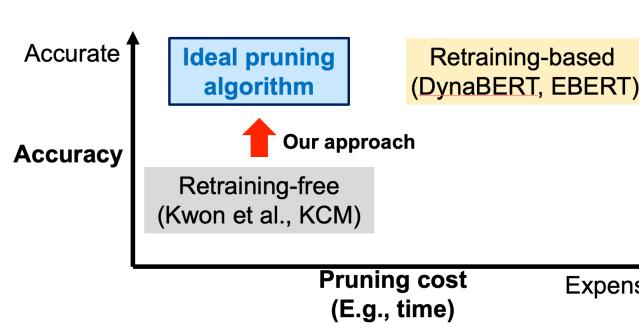
Summary

Problem: Retraining-free Structured Pruning of PLMs

- Given a pre-trained language model (PLM), how can we accurately prune it without retraining?
- We focus on pruning attention heads and neurons

Previous structured pruning algorithms for PLMs

- Retraining-based algorithms
- Accurate, but too expensive
- Retraining-free algorithms
 - Cheap, but too inaccurate



Proposed Method: K-prune

Improving the accuracy of retraining-free pruning algorithms by preserving PLM's knowledge by iterative pruning process

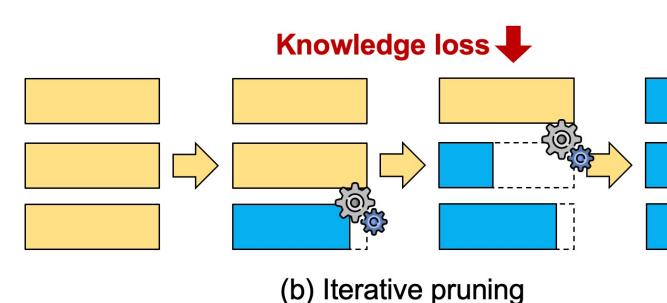
Experimental results

- Up to 58%p more accurate than existing retraining-free pruning algorithms with similar pruning costs
- Up to 422× lower pruning cost than existing retraining-based pruning algorithms with similar accuracy

Intuition

- Previous retraining-free algorithms (a) lose PLM's useful knowledge because of its aggressive one-shot pruning process
- An iterative pruning process (b) with an efficient knowledge recovery process the loss of PLM's useful knowledge





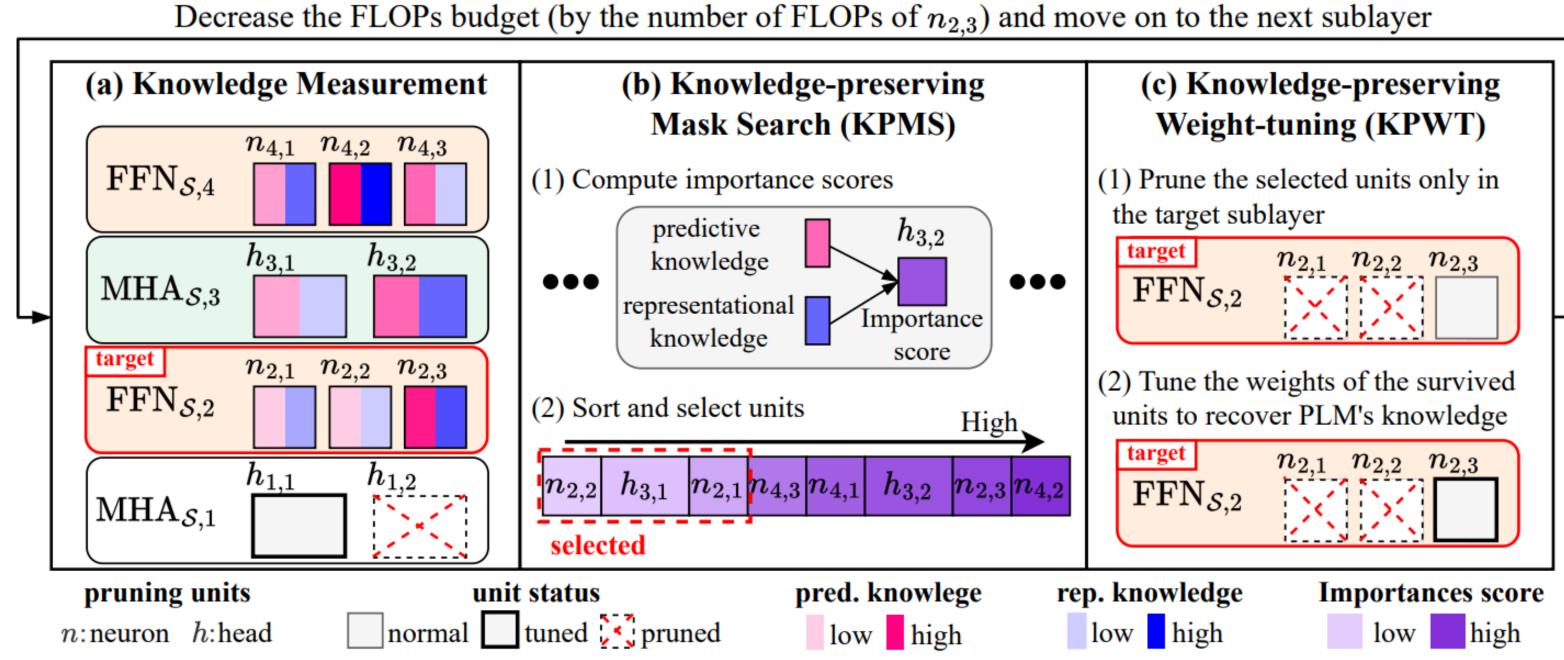
Accurate Retraining-free Pruning for Pretrained Encoder-based Language Models

Seungcheol Park Seoul National University

Hojun Choi KAIST

Proposed I	Method
------------	--------

- An accurate retraining-free structured pruning algorithm for pretrained language models
- Focusing on preserving the useful knowledge of pretrained models through a carefully designed sublayer-wise iterative process includes an efficient knowledge recovery process



Main ideas

Expensive

(a) Knowledge measurement

We measure the amount of inherent knowledge in each attention head and neuron to exploit it as an importance criterion

(b) Knowledge-preserving mask search (KPMS)

- We estimate importance scores that reflect the amount of their inherent knowledge considering knowledge types and unit types
- Selecting uninformative units with the least importance scores

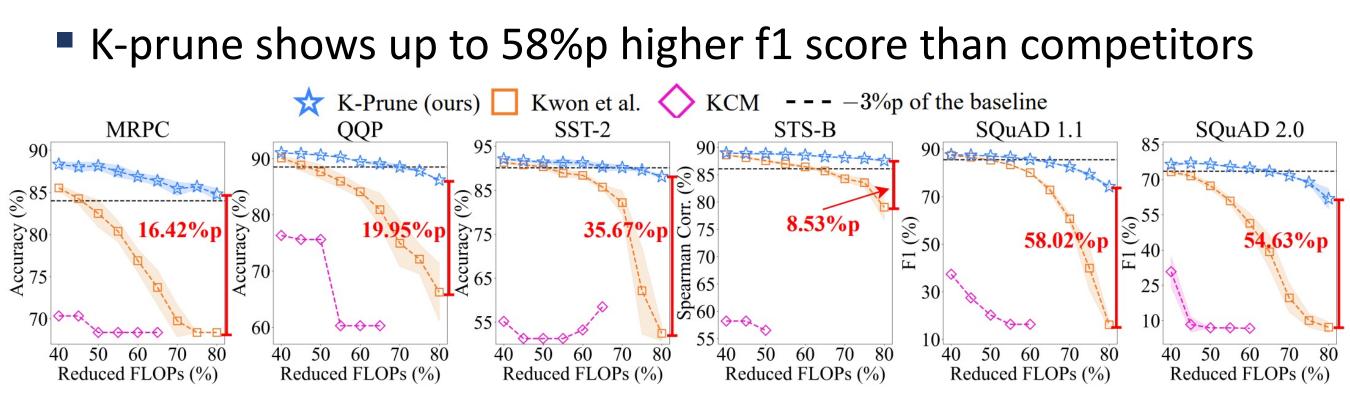
(c) Knowledge-preserving Weight-tuning (KPWT)

- We prune the redundant components selected in (b) and perform a short weight-tuning process to reconstruct the knowledge of PLMs
- Extremely efficient and performs in a second for each sublayer

U Kang Seoul National University

Experiments

Accuracy of the compressed models



Inference speedup (on 1080Ti without customized kernels)

Method

KCM (Nova et al., 2023) Kwon et al. (2022b) K-prune (ours)

Pruning efficiency

- compression ratio of 75%

retraining-free algorithms

BE	ST	MNL	I 42
% 80 ਨ 75	\$		¢
08 (%) 75 70 70 70 65 60			
	10^{-1}	10^{0} .	10^{1}
Drupir		uning tin	
Prunir	ig o		5
Per	plex	ities o	of O
prur	ning	with	К-р
		OPT-1.3	B
runing rate	0%	5%	10%
erplexity ifference	14.67 -	14.41 -1.77%	13.96 -4.84%

Compare the best inference speedup within a 3%p accuracy drop

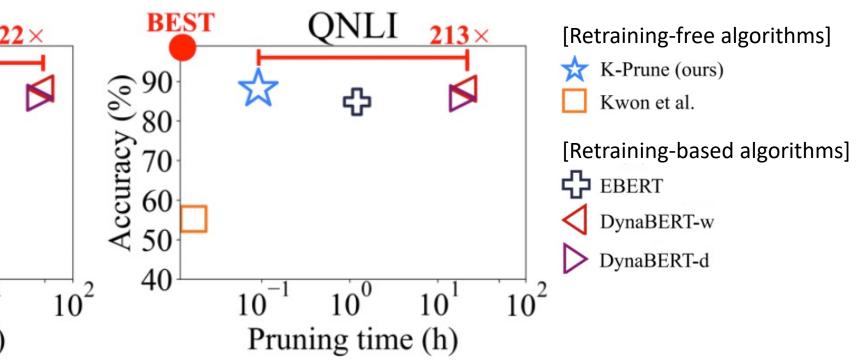
K-prune shows the largest speedup than competitors

	MRPC	STS-B	$SQuAD_{1.1}$	$SQuAD_{2.0}$	Avg.*
3)	$1.08 \times$	$1.23 \times$	$1.20 \times$	$1.08 \times$	$1.15 \times$
	1. 5 9×	$2.10 \times$	$2.09 \times$	$1.75 \times$	$1.87 \times$
	$2.66 \times$	$2.43 \times$	2.60 imes	$2.93 \times$	$2.65 \times$
				a	•

* Geometric mean

Accuracy of the compressed models vs. pruning time under a

K-prune shows the best trade-off without losing the efficiency of



OPT models on WikiText2 dataset after orune

			OPT-2.7B					
6	15%	20%	Pruning rate	0%	5%	10%	15%	20%
6	14.67	15.74	Perplexity	12.46	12.23	11.94	12.01	12.51
%	0.00%	7.29%	Difference	-	-1.85%	-4.17%	-3.61%	0.40%