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Introduction

Radford et al., 2021 have demonstrated that CLIP,
an image-language multimodal contrastive
learning (MMCL) algorithm, with zero-shot
classification, achieves better out-of-distribution
(OOD) robustness compared to existing supervised
learning techniques.

Mechanism 1: Intra-class contrasting
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Scenario:

Scenario:

‘dog’ - core feature

has high variance because dogs
vary significantly in appearance.
‘grass’ - spurious feature

has low variance because grass
tends to look similar.
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Figure source: Radford, Alec, et al. 2021
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Theorem (informal): MMCL can learn
core features of one class through
their occurrence in other classes, while
SL cannot do this.
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However, the 'why' is not understood.

Our contribution

Importance of rich captions

MMCL learns ‘dog’:
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* Rich captions are essential for achieving

“A black and white dog lying on its back on
a grassy surface. The dog has thick fur,
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robustness. Theorem (informal):

distinctive coloring, and bright, alert eyes”

(a) MMCL is more
robust than SL.

(c) Intra-class contrasting
contributes to robustness.

(b) Caption richness
contributes to robustness.

richnessd = robustness!
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