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Introduction

P/F exams Auctions Employment



Model

• A one-shot interaction between a learner and an agent is:
1. The learner sets a threshold 𝛾,

2. The agent draws a value 𝑣 (latent value) from a distribution 𝐹,

3. If 𝑣 ≥ 𝛾, the learner will observe a reward feedback 𝑔 𝛾, 𝑣 ; if 𝑣 < 𝛾, the 
learner will observe nothing. (censored feedback).

• Note: The value distribution 𝐹 and reward function 𝑔 are both 
unknown to the learner.

In the posted price auctions, 𝑔 𝛾, 𝑣 = 𝛾.



Model

• But the learner knows that 
• the value distribution 𝐹 is from a set 𝐶,

• the reward function 𝑔 is from a set 𝐺.

• For any threshold 𝛾, the learner’s expected reward is

𝑈 𝛾 = 𝐸𝑣~𝐹[𝑔(𝛾, 𝑣) ∙ 𝟏𝑣≥𝛾].

• How many queries are needed to learn a threshold such that 
the expected reward is at most 𝜺 smaller than the optimum?

QC𝐶,𝐺 𝜀 = the minimum queries needed to learn such a threshold 
for any 𝐹 ∈ 𝐶 and 𝑔 ∈ 𝐺.



Main Result: Overview
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We also extend this model to an online learning setting and 

demonstrate a tight Θ 𝑇2/3 regret based on these offline results.  



Outline

• Introduction

• Model

• Main Result

• Overview

• Impossibility

• Upper Bound

• Lower Bound



Main Result: Impossibility

• Parameterized pairs of monotone reward function and value 
distribution (𝑔𝛼 , 𝐹𝛼).

• Given 𝑔𝛼 , 𝐹𝛼 , the optimal threshold is 𝛾∗ = 𝛼. 

• The optimum 𝑈 𝛾∗ is larger than any expected reward 
𝑈 𝛾 𝛾 ≠ 𝛾∗ by a constant.

• The learner must know the exact value of 𝛼!

• Our construction allows any 𝛼ϵ
1

2
,
9

16
⇒ infinite queries.

TL;DR: “Needle in 

the Haystack”



Main Result: Upper Bound

• Lipschitzness of 𝐺 or 𝐶 allows us to uniformly discretize on the 

range 0,1 of threshold 𝛾: 𝛤 = {0,
1

𝜀
, … , 1}, 𝛤 = O(

1

𝜀
).

• For 𝛾 ϵ 𝛤, ෩O
1

𝜀2
queries are sufficient to learn the corresponding 

expected reward 𝑈(𝛾) with 𝜀 error.

• Choose the threshold that has the largest estimated expected 
reward.

• Totally ෩O
1

𝜀3
queries are sufficient.

TL;DR: 

Discretization



Main Result: Lower Bound

• Simple reward function 𝑔 𝛾, 𝑣 = 𝛾.

• Base value distribution satisfies that any 𝛾 ϵ [
1

3
,
1

2
] is optimal.

• Perturb the base value distribution so that

• Perturbed value distribution satisfies that a unique 𝛾∗ϵ [
1

3
,
1

2
] is optimal

• One perturbation is operated on a subinterval of [
1

3
,
1

2
] that has length O 𝜀 .

• Subintervals of different perturbations are required to be disjoint ⇒ O
1

𝜀
perturbations.
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Step 2: perturbed distribution



Main Result: Lower Bound

• We prove that Ω
1

𝜀2
queries are needed to distinguish base 

distribution and one perturbed distribution.

• Totally Ω
1

𝜀3
queries are necessary.

TL;DR: Reduce to 

distinguishing 

similar distributions

Thank you for your attention.


