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Model

« A one-shot interaction between a learner and an agent is:
1. The learner sets a threshold vy,

2. The agent draws a value v ( ) from a distribution F,
3. If v =y, the learner will observe a reward feedback g(y,v) ; if v <y, the
learner will observe nothing. ( ).

In the posted price auctions, g(y,v) =v.

* Note: The value distribution F and reward function g are both
unknown to the learner.



Model

* But the learner knows that
e the value distribution F I1s from a set C,
* the reward function g is from a set G.

* For any threshold y, the learner’s expected reward is
U(y) = E,rlg(y,v) - 1v2y: -

« How many queries are needed to learn a threshold such that
the expected reward Is at most € smaller than the optimum?

QC¢ ¢ (¢) = the minimum queries needed to learn such a threshold
forany F € C and g € G.




Main Result: Overview

_LowerBound Upper Bound Lower Bound Upper Bound

Monotone Infinite
(1
Ne

We also extend this model to an online learning setting and
demonstrate a tight ©(72%/3) regret based on these offline results.
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Main Result: Impossibility gt

the Haystack”

« Parameterized pairs of monotone reward function and value
distribution (g, F,).

 Given (g,, F,), the optimal threshold is y* = «.

* The optimum U(y*) is larger than any expected reward
U(y) (y # y*) by a constant.

* The learner must know the exact value of «!
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* Our construction allows any ae (5,1—6) = Infinite queries.



Main Result: Upper Bound

* Lipschitzness of ¢ or C allows us to uniformly discretize on the
range [0,1] of threshold y: I' = {0,1, o 1, |7 = ()(3).

*Foryerl, O ( ) gueries are sufficient to learn the corresponding
expected reward U(y) with & error.

» Choose the threshold that has the largest estimated expected
reward.

- Totally O ( ) gueries are sufficient. TL:DR:

Discretization




Main Result: Lower Bound

« Simple reward function g(y,v) =vy.
» Base value distribution satisfies that any y e [%,%] IS optimal.

 Perturb the base value distribution so that
» Perturbed value distribution satisfies that a unique y*e [%,%] IS optimal

» One perturbation is operated on a subinterval of [g,%] that has length O(e).

« Subintervals of different perturbations are required to be disjoint = 0O (%)
perturbations.
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Step 1: base distribution
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Step 2: perturbed distribution



Main Result: Lower Bound

* We prove that Q( ) gueries are needed to distinguish base
distribution and one perturbed distribution.

* Totally Q( ) gueries are necessary.

TL:DR: Reduce to

distinguishing
similar distributions

Thank you for your attention.



