Learning Thresholds with Latent Values and Censored Feedback

Jiahao Zhang¹ Tao Lin² Weiqiang Zheng³ Zhe Feng⁴ Yifeng Teng⁴ Xiaotie Deng¹

Introduction

Model

- A one-shot interaction between a learner and an agent is:
 - 1. The learner sets a threshold γ ,
 - 2. The agent draws a value v (latent value) from a distribution F,
 - 3. If $v \ge \gamma$, the learner will observe a reward feedback $g(\gamma, v)$; if $v < \gamma$, the learner will observe nothing. (censored feedback).

In the posted price auctions, $g(\gamma, v) = \gamma$.

• <u>Note</u>: The value distribution *F* and reward function *g* are both **unknown** to the learner.

Model

- But the learner knows that
 - the value distribution F is from a set C,
 - the reward function g is from a set G.
- For any threshold γ , the learner's expected reward is

 $U(\gamma) = E_{\nu \sim F}[g(\gamma, \nu) \cdot \mathbf{1}_{\nu \geq \gamma}].$

How many queries are needed to learn a threshold such that the expected reward is at most ε smaller than the optimum?
QC_{C,G}(ε) = the minimum queries needed to learn such a threshold for any F ∈ C and g ∈ G.

Main Result: Overview

Reward/Value	General		Lipschitz	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Monotone	Infinite		$O\left(\frac{1}{2}\right)$	$\widetilde{O}\left(\frac{1}{2}\right)$
Right-Lipschitz	$\Omega\left(\frac{1}{\varepsilon^3}\right)$	$\widetilde{O}\left(\frac{1}{\varepsilon^3}\right)$	(ε^3)	$\left(\varepsilon^{3}\right)$

We also extend this model to an online learning setting and demonstrate a **tight** $\Theta(T^{2/3})$ regret based on these offline results.

Outline

- Introduction
- Model
- Main Result
 - Overview
 - Impossibility
 - Upper Bound
 - Lower Bound

Main Result: Impossibility

TL;DR: "Needle in the Haystack"

- Parameterized pairs of monotone reward function and value distribution (g_{α}, F_{α}) .
- Given (g_{α}, F_{α}) , the optimal threshold is $\gamma^* = \alpha$.
- The optimum $U(\gamma^*)$ is larger than any expected reward $U(\gamma) \ (\gamma \neq \gamma^*)$ by a constant.
- The learner must know the exact value of α !
- Our construction allows any $\alpha \in \left(\frac{1}{2}, \frac{9}{16}\right) \Rightarrow$ infinite queries.

Main Result: Upper Bound

- Lipschitzness of *G* or *C* allows us to uniformly discretize on the range [0,1] of threshold γ : $\Gamma = \{0, \frac{1}{\epsilon}, ..., 1\}, |\Gamma| = 0(\frac{1}{\epsilon}).$
- For $\gamma \in \Gamma$, $\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$ queries are sufficient to learn the corresponding expected reward $U(\gamma)$ with ε error.
- Choose the threshold that has the largest estimated expected reward.
- Totally $\tilde{O}\left(\frac{1}{\varepsilon^3}\right)$ queries are sufficient.

Main Result: Lower Bound

- Simple reward function $g(\gamma, \nu) = \gamma$.
- Base value distribution satisfies that any $\gamma \in [\frac{1}{3}, \frac{1}{2}]$ is optimal.
- Perturb the base value distribution so that
 - Perturbed value distribution satisfies that a unique $\gamma^* \in [\frac{1}{3}, \frac{1}{2}]$ is optimal
 - One perturbation is operated on a subinterval of $\left[\frac{1}{3}, \frac{1}{2}\right]$ that has length $O(\varepsilon)$.
 - Subintervals of different perturbations are required to be disjoint $\Rightarrow 0\left(\frac{1}{\varepsilon}\right)$ perturbations.

Step 1: base distribution

Step 2: perturbed distribution

Main Result: Lower Bound

- We prove that $\Omega\left(\frac{1}{\epsilon^2}\right)$ queries are needed to distinguish base distribution and one perturbed distribution.
- Totally $\Omega\left(\frac{1}{\varepsilon^3}\right)$ queries are necessary.

Thank you for your attention.