SAFLEX: Self-Adaptive Augmentation via Feature Label Extrapolation

Motivation & Problem

of Augmentation Methods Limitatior

Data augmentation is pivotal in enhancing model generalization. However, its limitations, particularly the unintentional introduction of noise, can sometimes outweigh its benefits.

This inherent noise creates a trade-off: under-augmentation may yield insufficient challenging examples, whereas overaugmentation can flood the dataset with misleading samples.

in Augmentations

Noises in augmentation primarily arises from two fundamental challenges:

- (1) the deviation of augmented samples x^{aug} from the original data distribution;
- (2) the potential mislabeling y^{aug} of augmented samples.

Question: Can we efficiently refine augmented samples to reduce noise and improve model generalization?

Yes, by learning sample weights and soft labels using a bilevel optimization approach called SAFLEX!

Contributions

- (1) Novel parametrization and bilevel algorithm for learnable augmentation.
- (2) Universally compatible, integrates with various learning processes and augmentation methods.
- (3) Empirically validated on diverse datasets and tasks, boosting performance by 1.2% on average

Proposed Method: SAFLEX

We propose SAFLEX (Self-Adaptive Augmentation via Feature Label Extrapolation)

which automatically learns the sample weights and soft labels of augmented samples provided by any upstream augmentation pipeline.

Limitations of Existing Learnable Augmentations

Existing learnable augmentation methods: directly learn in highdimensional feature spaces

• Restricted augmentation scope due to differentiability needs

• Complicated training process

• Limited generalization across tasks

Mucong Ding, Bang An, Yuancheng Xu, Anirudh Satheesh, Furong Huang University of Maryland, College Park

Pseudo-code of SAFLEX

Algorithm 1: SAFLEX (Cross-Entropy Loss, Single batch)

- **Input:** Neural network $f(\cdot) : \mathcal{X} \to \Delta^K$ (softmax applied on outputs) with parameters θ , upstream augmented batch { $(x_1^{\text{aug}}, y_1^{\text{aug}}), \ldots, (x_B^{\text{aug}}, y_B^{\text{aug}})$ }, validation batch $\mathcal{D}_{\text{val}}^{\text{batch}} = \{(x_1^{\text{val}}, y_1^{\text{val}}), \ldots, (x_{B'}^{\text{val}}, y_{B'}^{\text{val}})\}$, penalty coefficient β , temperature τ .
- 1 Compute the gradient vector for the validation batch $\nabla_{\theta} \mathcal{L}(\mathcal{D}_{val}^{batch}, \theta)$
- 2 for i = 1, ..., B do // The actual implementation is vectorized. Determine the gradient inner product $\Pi_i = \nabla_{\theta} f(x_i^{\text{aug}}) \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{val}}^{\text{batch}}, \theta)$ via Jacobian-vector product.
- Apply Gumbel-SoftMax to get $\mathbf{y}_i = \operatorname{softmax}((\mathbf{\Pi}_i + \beta \mathbf{e}_{y_i^{\operatorname{aug}}} + \mathbf{g})/\tau)$, where $e_{y_i^{\operatorname{aug}}} \in \mathbb{R}^K$ is one-hot
- at y_i^{aug} , and g consists of i.i.d. random variables taken from Gumbel(0, 1).
- Set $w_i = 1$ if $\Pi_i \cdot \mathbf{y}_i \ge 0$, otherwise set $w_i = 0$.
- 6 Renormalize the sample weights w_1, \ldots, w_B to sum to 1.

7 return Sample weights $w_1^{\text{aug}}, \ldots, w_B^{\text{aug}}$, and soft labels $\mathbf{y}_1^{\text{aug}}, \ldots, \mathbf{y}_B^{\text{aug}}$

Experiments

Adapting Augmentations to Medical Images

SAFLEX improves the performance of popular augmentation techniques like RandAugment and Mixup on eight medical image datasets.

Method	Path	Derma	Tissue	Blood	ОСТ	OrganA	OrganC	OrganS
No Aug	94.34 ± 0.18	76.14 ± 0.09	68.28 ± 0.17	96.81 ± 0.19	78.67 ± 0.26	94.21 ± 0.09	91.81 ± 0.12	81.57 ± 0.07
RandAug	93.52 ± 0.09	73.71 ± 0.33	62.03 ± 0.14	95.00 ± 0.21	76.00 ± 0.24	94.18 ± 0.20	91.38 ± 0.14	80.52 ± 0.32
SAFLEX	95.11 ± 0.14	76.60 ± 0.33	64.32 ± 0.18	06.01 ± 0.15	70.63 ± 0.28	05.32 ± 0.20	02.10 ± 0.21	82.85 ± 0.42
(w/ RandAug)	<i>35.............</i>	10.09 ± 0.55	04.52 ± 0.13	90.91 ± 0.10	19.00 ± 0.20	90.02 ± 0.29	<i>9</i> 2.10 ⊥ 0.21	02.00 ± 0.42
Mixup	92.98 ± 0.19	75.22 ± 0.45	66.62 ± 0.31	96.28 ± 0.23	77.93 ± 0.41	94.12 ± 0.35	90.76 ± 0.28	80.99 ± 0.21
SAFLEX	03.71 ± 0.37	76.94 ± 0.51	68.31 ± 0.43	97.21 ± 0.35	70.54 ± 0.44	95.06 ± 0.31	02.73 ± 0.53	82.14 ± 0.27
(w/ Mixup)	50.11 ± 0.01	10.34 ± 0.31	00.01 ± 0.40	97.21 ± 0.55	19.04 ± 0.44	90.00 ± 0.01	92.10 ± 0.00	02.14 ± 0.21

Refining Augmentations for Tabular Data

SAFLEX improves the performance of CutMix across diverse tabular datasets.

Method	Model	Appetency	Arrhythmia	Click	Credit	QASR	Shrutime	Volkert
No Aug	MLP	49.03 ± 0.01	81.53 ± 0.03	52.54 ± 0.04	66.91 ± 0.03	91.84 ± 0.02	86.27 ± 0.04	61.14 ± 0.05
CutMix	MLP	48.98 ± 0.03	81.57 ± 0.05	52.59 ± 0.09	73.68 ± 0.08	91.87 ± 0.02	86.39 ± 0.05	61.20 ± 0.02
SAFLEX (w/ CutMix)	MLP	51.04 ± 0.09	83.02 ± 0.06	52.81 ± 0.06	74.61 ± 0.15	92.69 ± 0.13	86.90 ± 0.10	61.51 ± 0.05
No Aug	SAINT	78.90 ± 0.03	83.90 ± 0.01	65.72 ± 0.06	79.49 ± 0.05	98.18 ± 0.04	87.53 ± 0.04	66.82 ± 0.05
CutMix	SAINT	81.05 ± 0.07	85.32 ± 0.09	65.77 ± 0.04	79.71 ± 0.08	98.61 ± 0.06	87.61 ± 0.07	68.23 ± 0.10
SAFLEX (w/ CutMix)	SAINT	81.33 ± 0.14	85.27 ± 0.14	66.12 ± 0.09	79.93 ± 0.17	98.59 ± 0.21	87.93 ± 0.13	68.91 ± 0.17

Purifying Diffusion-Model-Generated Augments

SAFLEX consistently improves the performance of all three diffusion-modelgenerated augmentation techniques, across both fine-grained classification and out-of-distribution generalization tasks.

Task	No Aug	RandAug	Text2Img	InstructPix2Pix		Img2Img (w/o finetune)		Img2Img (w/ finetune)	
	_	_	_	w/o SAFLEX	w/ SAFLEX	w/o SAFLEX	w/ SAFLEX	w/o SAFLEX	w/ SAFLEX
Fine-Grained Classification	68.60 ± 0.16	71.26 ± 0.52	69.68 ± 0.97	71.38 ± 0.91	72.34 ± 0.59	71.25 ± 0.86	73.22 ± 0.63	72.01 ± 1.24	73.61 ± 0.78
OOD Generalization	57.19 ± 1.13	61.34 ± 2.72	64.53 ± 3.01	67.29 ± 1.96	69.92 ± 0.88	70.65 ± 1.50	72.61 ± 1.44	70.49 ± 1.21	72.83 ± 0.92

Applying to Contrastive Fine-Tuning

SAFLEX enhances the performance of standard image augmentations like RandAugment when applied to the contrastive fine-tuning.

Task		Zero-Shot	LP-FT	FLYP	FLYP+RandAug	FLYP+SAFLEX (w/ RandAug)
ID	w/o Encombling	8.7 ± 0.0	49.7 ± 0.5	52.2 ± 0.6	52.4 ± 0.8	52.7 ± 0.7
OOD	w/o Ensembling	11.0 ± 0.0	34.7 ± 0.4	35.6 ± 1.2	36.3 ± 1.4	36.9 ± 1.5
ID	w/Encombling	8.7 ± 0.0	50.2 ± 0.5	52.5 ± 0.6	52.6 ± 1.0	53.0 ± 0.7
OOD	w/Ensembling	11.0 ± 0.0	35.7 ± 0.4	37.1 ± 1.2	37.6 ± 0.9	37.8 ± 1.1