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Background

Black-box models with post-hoc explanation techniques: Find salient features!

Visual Explanation
Source: Fong et al.

Graph Explanation
Source: Miao et al.

Game Explanation
Source: Liu et al.

Risk factor (e.g., 

heart disease)
Trained

Black-box

ExplainerRed meat intake

Physical activity

Alcohol consumption

https://arxiv.org/pdf/1704.03296.pdf
https://arxiv.org/pdf/2201.12987.pdf
https://proceedings.mlr.press/v202/liu23be/liu23be.pdf


Challenges for Explaning Time Series

Dynamask, Crabbe´et al.

➢ Fail to interpret visually

• Dense salient features 

(unlike the image and text)

• Noisy samples in time series

➢ Hard find temporal pattenrns

• The time series is smoothed

➢ Perturbations matter

• Setting a more uninformative 

values is important

• Give only instance-based 

explanations

https://arxiv.org/pdf/2106.05303.pdf


Existing Perturbations are Inadequate

Illustrating different styles of perturbation. 

Other perturbations could be either not 

uninformative or not in-domain, while 

ours is counterfactual that is toward the 

distribution of negative samples.

where

➢ Those perturbations may out of 

distribution or label leakage

➢ Cannot relate temporal patterns 

across samples



ContraLSP Architecture

Perturbation:

How to learn the uninformative           and sparse mask m?



Two Main Contributions (1)

➢ Learning counterfactuals from contrastive loss

• Step1: Find positive and negative samples

• Step2: Optimizing via Manhattan distance Learning counterfactuals

Where {



Two Main Contributions (2)

➢ Learning sparse gates with smooth constraint

If not smooth, predictor f may error! 

Binary-skewed masks

• Sparse gates:

• L0-regularization:



Synthetic Experiments (with label)

1. White-box Regression 2. Black-box Classification



Synthetic Experiments (with label)

➢ Counterfactual information

➢ Distribution analysis of perturbations



Real-world Experiments (without label)

3. MIMIC-III Mortality Data



Conclusion

➢ We propose ContraLSP as a time series explainer, which incorporates 

counterfactual samples to build uninformative in-domain perturbation.

➢ We incorporate sample-specific sparse gates to generate more binary-

skewed and smooth masks.

➢ The code is available at https://github.com/zichuan-liu/ContraLSP.

https://github.com/zichuan-liu/ContraLSP


Future Explorations

faithfulness

accuracy

➢ How to represent uncertainty when black box models are inaccurate

faithfulness

accuracy

➢ Quantification of compression amplitude and parameter tuning strategy



Any Questions? Please use the chat !

Thanks for your listening!
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