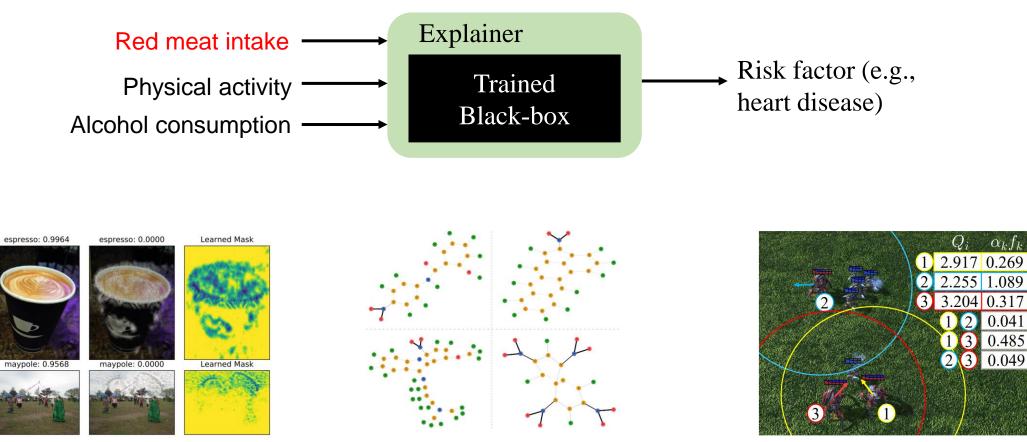


Explaining Time Series via Contrastive and Locally Sparse Perturbations


Zichuan Liu^{1,2} Yingying Zhang² Tianchun Wang³ Zefan Wang^{2,4} Dongsheng Luo⁵ Mengnan Du⁶ Min Wu⁷ Yi Wang⁸ Chunlin Chen¹ Lunting Fan² Qingsong Wen²

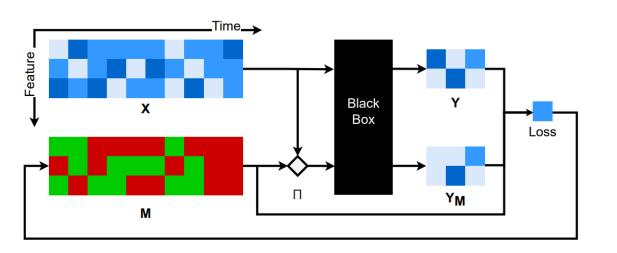
¹Nanjing University, ²Ailibaba Group,
 ³Pennsylvania State University, ⁴Tsinghua University,
 ⁵Florida International University,
 ⁶New Jersey Institute of Technology,
 ⁷A*STAR, ⁸The University of Hong Kong

Background

Black-box models with post-hoc explanation techniques: *Find salient features*!

 $\alpha_k f$

1.089


Game Explanation

Source: Liu et al.

Visual Explanation Source: Fong et al.

Challenges for Explaning Time Series

Dynamask, Crabbe' et al.

$$\Phi(x,m)=m imes x+(1-m) imes u$$

 $\operatorname*{arg\,min}_{\text{label consistency}} \underbrace{\mathcal{L}(f(x), f \circ \Phi(x, m))}_{\text{regular}} + \underbrace{\mathcal{R}(m)}_{\text{regular}} + \underbrace{\mathcal{A}(m)}_{\text{smooth}}$

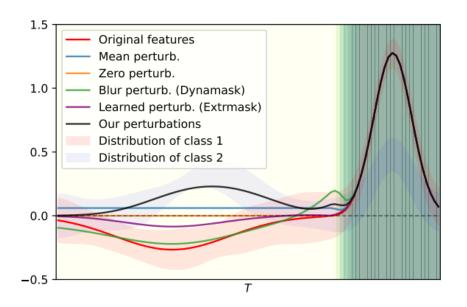
> Fail to interpret visually

- Dense salient features (unlike the image and text)
- Noisy samples in time series

> Hard find temporal pattenrns

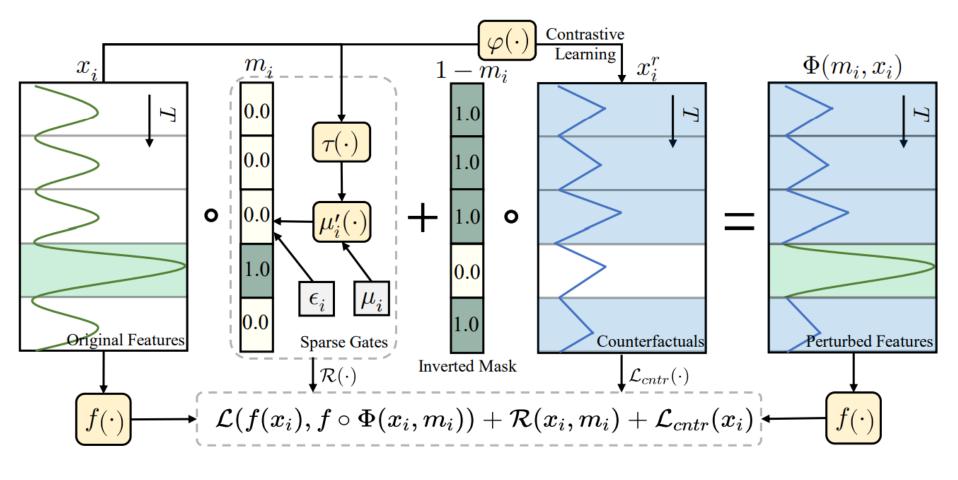
• The time series is smoothed

Perturbations matter


- Setting a more uninformative values is important
- Give only instance-based explanations

Existing Perturbations are Inadequate

U


$$egin{aligned} \Phi(x,m) &= m imes x + (1-m) imes where & u = egin{cases} 0 \ rac{1}{w+1} \sum_{t-w}^t x_i \ ext{Gaussian blur} \ ext{NN}(x) \ \dots \end{aligned}$$

- Those perturbations may out of distribution or label leakage
- Cannot relate temporal patterns across samples

Illustrating different styles of perturbation. Other perturbations could be either not uninformative or not in-domain, while ours is counterfactual that is toward the distribution of negative samples.

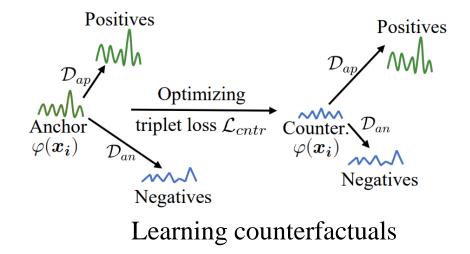
ContraLSP Architecture

Perturbation: $\Phi(x,m)=m imes x+(1-m) imes arphi_{cntr}(x)$

How to learn the *uninformative* $\varphi_{cntr}(x)$ and *sparse mask m*?

Two Main Contributions (1)

> Learning counterfactuals from contrastive loss


• Step1: Find positive and negative samples

$$\begin{pmatrix} \boldsymbol{x}_{i}^{r}, \{\boldsymbol{x}_{i,k}^{r^{+}}\}_{k=1}^{K^{+}}, \{\boldsymbol{x}_{i,k}^{r^{-}}\}_{k=1}^{K^{-}} \end{pmatrix}$$

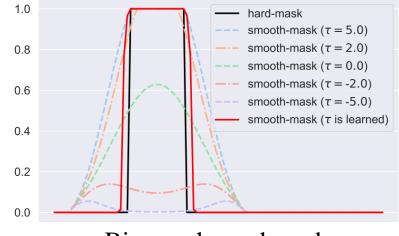
$$\mathcal{D}_{an} = \frac{1}{K^{-}} \sum_{k=1}^{K^{-}} |\boldsymbol{x}_{i}^{r} - \boldsymbol{x}_{i,k}^{r^{-}}|$$
Where $\begin{cases} \mathcal{D}_{ap} = \frac{1}{K^{+}} \sum_{k=1}^{K^{+}} |\boldsymbol{x}_{i}^{r} - \boldsymbol{x}_{i,k}^{r^{+}}| \end{cases}$

• Step2: Optimizing via Manhattan distance

$$\mathcal{L}_{cntr}(\boldsymbol{x}_i) = \max(0, \mathcal{D}_{an} - \mathcal{D}_{ap} - b) + \|\boldsymbol{x}_i^r\|_1,$$

Two Main Contributions (2)

Learning sparse gates with smooth constraint


If not smooth, predictor f may error!

• Sparse gates:

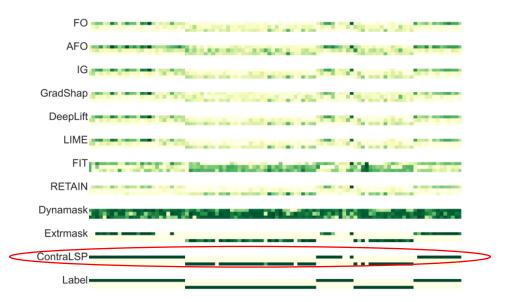
$$\boldsymbol{\mu}_i' = \boldsymbol{\mu}_i \odot \sigma(\tau_{\theta_2}(\boldsymbol{x}_i)\boldsymbol{\mu}_i) = \frac{\boldsymbol{\mu}_i}{1 + e^{-\tau_{\theta_2}(\boldsymbol{x}_i)\boldsymbol{\mu}_i}},$$

• L₀-regularization:

$$\mathcal{R}(\boldsymbol{x}_i, \boldsymbol{m}_i) = \|\boldsymbol{m}_i\|_0 = \sum_{t=1}^T \sum_{d=1}^D \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\boldsymbol{\mu}_i'[t, d]}{\sqrt{2\delta}}\right)\right),$$

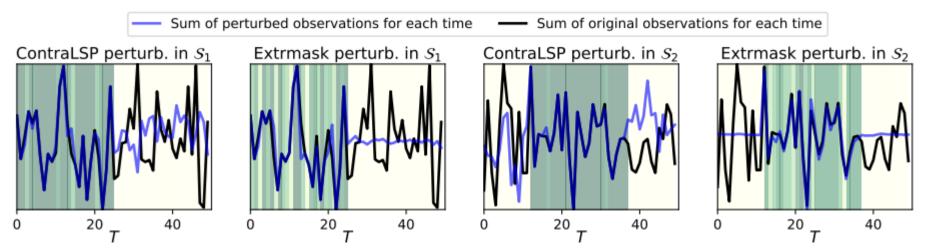
Binary-skewed masks

Synthetic Experiments (with label)


1. White-box Regression

	RARE-TIME					RARE-TIME (DIFFGROUPS)				
METHOD	AUP↑	AUR ↑	$I_{m}/10^{4}$	$\uparrow S_m/10$	$^{2}\downarrow$ AUP	\uparrow AUR \uparrow	$I_{m}/10^{4}$ \uparrow	$S_{m}/10^{2}\downarrow$		
FO	1.00 _{±0.0}	$0.13_{\pm 0.0}$	0.46 ± 0.0	47.20_{\pm}	0.61 1.00	0.16 ± 0.00	$0.53_{\pm 0.01}$	54.89 ± 0.70		
AFO	$1.00_{\pm 0.0}$							57.76 ± 0.72		
IG	$1.00_{\pm 0.0}$							54.62 ± 0.85		
SVS	$1.00_{\pm 0.0}$							54.28 ± 0.84		
DYNAMASK	$0.99_{\pm 0.02}$	$0.67_{\pm 0.0}$		37.24_{\pm}				$47.33_{\pm 1.02}$		
EXTRMASK	$ 1.00_{\pm 0.0}$	$0 0.88_{\pm 0.0}$	$16.40_{\pm 0}$	13.10_{\pm}	$_{0.78}$ 1.00	$0.00 0.83_{\pm 0.03}$	$13.37_{\pm 0.78}$	$27.44_{\pm 3.68}$		
CONTRALSP	$ 1.00_{\pm 0.0}$	0.97 ± 0.0	$19.51_{\pm 0}$	$4.65_{\pm 0}$.71 1.00 ±	0.00 0.94 ±0.01	$18.92_{\pm 0.37}$	$\textbf{4.40}_{\pm 0.60}$		
		RARE	-OBSERVATI	ON		RARE-OBSERV	ATION (DIFFGE	ROUPS)		
METHOD	AUP↑	AUR ↑	$I_{m}/10^{4}$	$\uparrow S_m/10$	$^{2}\downarrow$ AUP	\uparrow AUR \uparrow	$I_{\boldsymbol{m}}/10^4\uparrow$	$S_m/10^2\downarrow$		
FO	1.00 ±0.0	$0.13_{\pm 0.0}$	0.46 ± 0.0	47.39+	0.16 1.00 +	-0.00 0.14+0.00	$0.50_{\pm 0.01}$	$52.13_{\pm 0.96}$		
AFO	$1.00_{\pm 0.0}$							$56.92_{\pm 1.24}$		
IG	$1.00_{\pm 0.0}$		0.46 ± 0.0	47.82_{\pm}	0.15 1.00	$0.00 0.13 \pm 0.00$	$0.47_{\pm 0.00}$	$49.90_{\pm 0.88}$		
SVS	1.00±0.0		0.46 ± 0.0	47.39_{\pm}	0.16 1.00 ±	0.13 ± 0.00	$0.47_{\pm 0.01}$	49.53 ± 0.84		
DYNAMASK	$0.97_{\pm 0.00}$	0.65 ± 0.0			$0.58 0.98_{\pm}$			30.88 ± 0.70		
EXTRMASK	$1.00_{\pm 0.0}$		$13.25_{\pm 0}$	$9.55_{\pm 0}$.39 1.00 ±	$0.00 0.70_{\pm 0.04}$	$10.40_{\pm 0.54}$	$32.81_{\pm 0.88}$		
CONTRALSP	$ 1.00_{\pm 0.0}$	$1.00_{\pm 0.0}$	20.68 ± 0	0.03 $0.32_{\pm 0}$.16 1.00 ±	0.00 0.99 ±0.00	$20.51_{\pm 0.07}$	$0.57 \scriptstyle \pm 0.20$		
F	C	AFO	IG	SVS	Dynamas	c Extrmask	ContraLSP	Label		
Group E.										
Group S1										
Group S ₁										
2			1.2.2	- · ·						
Group S ₂										
			1.				=			
							\/			
Group S ₂							\backslash /			
1.1.1		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			B. AD ADD TO T	L BORNELLE	= /			
							\/			

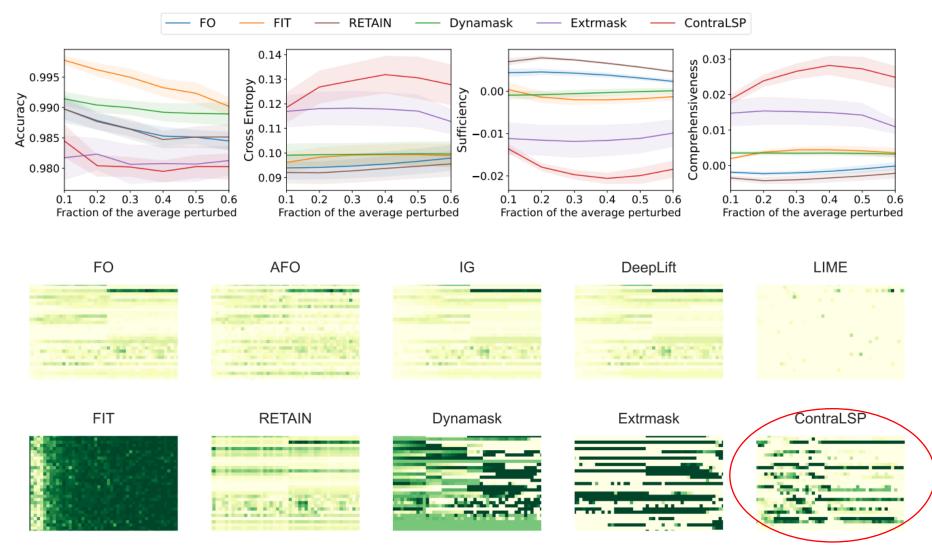
2. Black-box Classification


Table 2: Performance on Switch Feature and State data.

	Switch-Feature				STATE			
METHOD	AUP ↑	AUR ↑	$I_m/10^4$ \uparrow	$S_m/10^3\downarrow$	AUP ↑	AUR ↑	$I_m/10^4$ \uparrow	$S_m/10^3\downarrow$
FO	$0.89_{\pm 0.03}$	$0.37_{\pm 0.02}$	1.86 ± 0.14	15.60 ± 0.28	$0.90_{\pm 0.05}$	$0.30_{\pm 0.01}$	2.73 ± 0.15	$28.07_{\pm 0.54}$
AFO	$0.82_{\pm 0.06}$	$0.41_{\pm 0.02}$	$2.00_{\pm 0.14}$	17.32 ± 0.29	$0.84_{\pm 0.08}$	$0.36_{\pm 0.03}$	3.16 ± 0.27	34.03 ± 1.10
IG	$0.91_{\pm 0.02}$	$0.44_{\pm 0.03}$	$2.21_{\pm 0.17}$	$16.87_{\pm 0.52}$	$0.93_{\pm 0.02}$	$0.34_{\pm 0.03}$	$3.17_{\pm 0.28}$	$30.19_{\pm 1.22}$
GRADSHAP	$0.88_{\pm 0.02}$	$0.38_{\pm 0.02}$	1.92 ± 0.13	15.85 ± 0.40	$0.88_{\pm 0.06}$	$0.30_{\pm 0.02}$	2.76 ± 0.20	28.18 ± 0.96
DEEPLIFT	$0.91_{\pm 0.02}$	$0.44_{\pm 0.02}$	2.23 ± 0.16	16.86 ± 0.52	$0.93_{\pm 0.02}$	0.35 ± 0.03	$3.20_{\pm 0.27}$	$30.21_{\pm 1.19}$
LIME	$0.94_{\pm 0.02}$	$0.40_{\pm 0.02}$	$2.01_{\pm 0.13}$	16.09 ± 0.58	$0.95_{\pm 0.02}$	$0.32_{\pm 0.03}$	$2.94_{\pm 0.26}$	28.55 ± 1.53
FIT	$0.48_{\pm 0.03}$	$0.43_{\pm 0.02}$	$1.99_{\pm 0.11}$	17.16 ± 0.50	0.45 ± 0.02	$0.59_{\pm 0.02}$	7.92 ± 0.40	$33.59_{\pm 0.17}$
RETAIN	$0.93_{\pm 0.01}$	$0.33_{\pm 0.04}$	$1.54_{\pm 0.20}$	15.08 ± 1.13	$0.52_{\pm 0.16}$	$0.21_{\pm 0.02}$	1.56 ± 0.24	25.01 ± 0.57
DYNAMASK	$0.35_{\pm0.00}$	$0.77_{\pm 0.02}$	$5.22_{\pm 0.26}$	12.85 ± 0.53	$0.36_{\pm 0.01}$	$0.79_{\pm 0.01}$	$10.59_{\pm 0.20}$	$25.11_{\pm 0.40}$
EXTRMASK	$0.97_{\pm 0.01}$	$0.65_{\pm 0.05}$	$8.45_{\pm 0.51}$	$6.90_{\pm 1.44}$	$0.87_{\pm 0.01}$	$0.77_{\pm 0.01}$	$29.71_{\pm 1.39}$	$7.54_{\pm 0.46}$
CONTRALSP	0.98 ±0.00	$\textbf{0.80}_{\pm 0.03}$	$\textbf{24.23}_{\pm 1.27}$	$0.91_{\pm 0.26}$	$0.90_{\pm 0.03}$	$0.81_{\pm 0.01}$	$\textbf{50.09}_{\pm 0.78}$	$0.50_{\pm 0.05}$

Synthetic Experiments (with label)

Counterfactual information

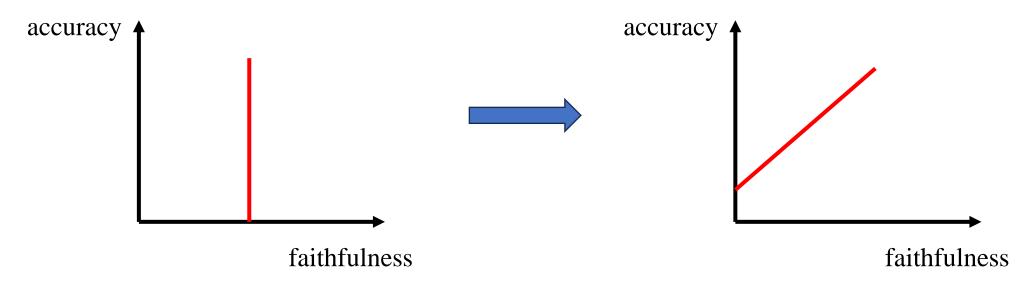


Distribution analysis of perturbations

Table 12: Difference between the distribution of different perturbations and the original distribution.

	RAH	re-Time	RARE-OBSERVATION		
PERTURBATION TYPE	KDE-SCORE ↑	KL-divergence \downarrow	KDE-SCORE ↑	KL-divergence \downarrow	
ZERO PERTURBATION	-25.242	0.0523	-23.377	0.0421	
MEAN PERTURBATION	-30.805	0.0731	-26.421	0.0589	
EXTRMASK PERTURBATION	-22.532	0.0219	-19.102	0.0104	
CONTRALSP PERTURBATION	-23.290	0.0393	-22.732	0.0386	

3. MIMIC-III Mortality Data



Conclusion

- ➢ We propose ContraLSP as a time series explainer, which incorporates counterfactual samples to build uninformative in-domain perturbation.
- We incorporate sample-specific sparse gates to generate more binaryskewed and smooth masks.
- > The code is available at <u>https://github.com/zichuan-liu/ContraLSP</u>.

Future Explorations

▶ How to represent uncertainty when black box models are inaccurate

> Quantification of compression amplitude and parameter tuning strategy

$$\widetilde{\mathcal{L}} = \mathcal{L}_{\mathrm{LC}} + \alpha \mathcal{L}_{M} + \beta (\mathcal{L}_{\mathrm{KL}} + \mathcal{L}_{dr}),$$

Thanks for your listening!

Any Questions? Please use the chat !