LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models

Overview

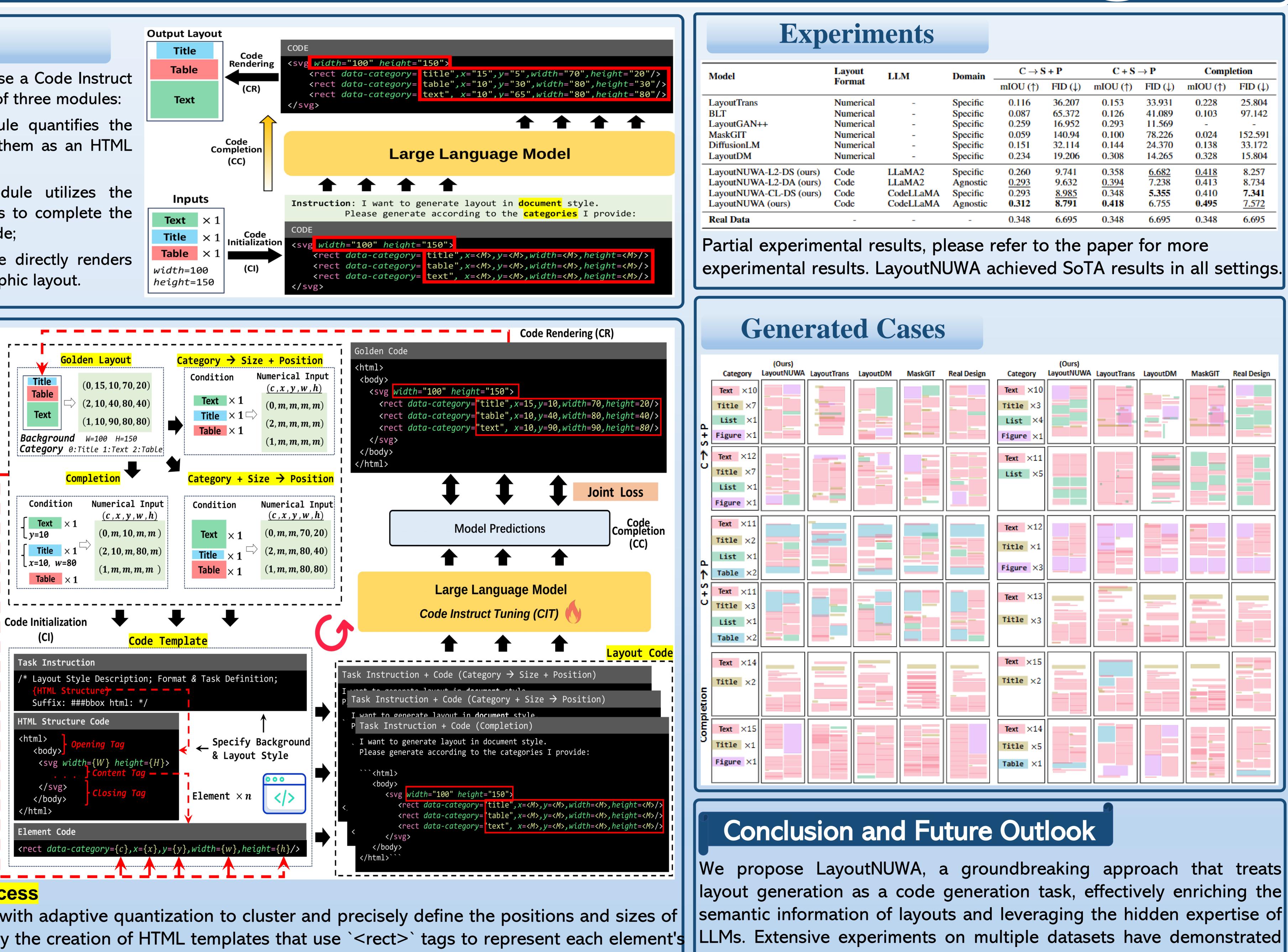
- > Overview of LayoutNUWA. We propose a Code Instruct Tuning \sim (CIT) approach that consists of three modules:
- \geq 1) the Code Initialization~(CI) module quantifies the numerical conditions and initializes them as an HTML code with masks;
- \geq 2) the Code Completion~(CC) module utilizes the knowledge of large language models to complete the masked portions within the HTML code;
- \geq 3) the Code Rendering~(CR) module directly renders the completed code into the final graphic layout.

Methodology

Code Initialization

- Adaptive Quantization: Clusters element positions and sizes using k-Means algorithm.
- Precision: One decimal place.
- Representation: Uses absolute positions for direct rendering and precision.

Template Construction


- HTML-based: Constructs templates from common web layout code.
- Tags: Describes elements with quantified positions and sizes.
- Layout Structure: Defines layout boundaries with opening and closing tags.

Code Completion

- Mask Tokens: Represents masked values for LLM prediction.
- **Direct Token Vocabulary:** Utilizes LLM's numerical token knowledge.

Streamline Layout Generation Process

The layout generation process begins with adaptive quantization to cluster and precisely define the positions and sizes of the layout elements. This is followed by the creation of HTML templates that use `<rect>` tags to represent each element's layout. To enable diverse layout predictions, language models are utilized to fill in masked values within the HTML code, with a self-consistency strategy that randomizes element order. The output is directly rendered using absolute positions, avoiding conversion losses, and is refined with regular expressions and clipping to ensure accurate webpage rendering. This method streamlines the creation of detailed and accurate layouts for various design requirements.

Zecheng Tang¹, Chenfei Wu^{*2}, Juntao Li¹, Nan Duan²

Code/Project Homepage: <u>https://github.com/ProjectNUWA/LayoutNUWA</u>

¹ Soochow University, China ² Microsoft Research Asia

layout generation as a code generation task, effectively enriching the semantic information of layouts and leveraging the hidden expertise of the superiority of our method. This research has the potential to revolutionize the field of layout generation and pave the way for further exploration and development of semantic-aware layout generation approaches in various applications.

Domain	$\mathbf{C} \rightarrow \mathbf{S} + \mathbf{P}$		$C + S \rightarrow P$		Completion	
	mIOU (†)	FID (↓)	mIOU (†)	FID (↓)	mIOU (†)	FID (↓)
Specific	0.116	36.207	0.153	33.931	0.228	25.804
Specific	0.087	65.372	0.126	41.089	0.103	97.142
Specific	0.259	16.952	0.293	11.569	-	-
Specific	0.059	140.94	0.100	78.226	0.024	152.591
Specific	0.151	32.114	0.144	24.370	0.138	33.172
Specific	0.234	19.206	0.308	14.265	0.328	15.804
Specific	0.260	9.741	0.358	6.682	0.418	8.257
Agnostic	0.293	9.632	0.394	7.238	0.413	8.734
Specific	0.293	8.985	0.348	5.355	0.410	7.341
Agnostic	0.312	8.791	0.418	6.755	0.495	<u>7.572</u>
-	0.348	6.695	0.348	6.695	0.348	6.695