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Representation harm due to underrepresentation

Representation: contrastive learning (CL) (Chen et al., 2020)

∠ Controlled study on CIFAR10 dataset (Krizhevsky et al., 2009)

∠ Q: Biases/harms from underrepresentation of “automobile” class in CL?
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Fig: Two-dimensional t-SNE embeddings

Stereotyping: a simplified representation of a (heterogeneous) group,
sometimes causing errors in judgment (Bordalo et al., 2016)
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Stereotyping due to underrepresentation
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Key obs: undersampling leads to harms of representation among similar classes!
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Stereotyping in text representation

Bias in Bios(De-Arteaga et al., 2019): “attorney” (∼ 38% female) vs.
“paralegal” (∼ 85% female).
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surgeon (F)

dentist (F)

physician (M)

dj (F)

rapper (F)

composer (F)

model (M)

0.96 1.00 1.01 0.98 0.98 1.00 1.00 1.02 0.98 1.02

1.02 0.95 0.94 1.00 0.98 1.01 1.02 1.03 1.02 1.03

1.03 0.98 0.94 1.02 0.99 1.00 1.00 1.01 1.04 1.02

1.03 1.03 1.02 0.96 0.95 1.00 1.03 1.04 1.02 1.03

1.09 1.06 1.05 1.00 0.92 1.04 1.05 1.06 1.05 1.05

1.02 1.02 1.00 0.96 0.97 0.95 1.02 1.02 1.02 1.02

1.18 1.18 1.17 1.15 1.12 1.18 0.95 0.99 1.09 1.09

1.23 1.22 1.22 1.19 1.16 1.21 1.01 0.95 1.18 1.12

1.10 1.12 1.12 1.09 1.06 1.11 1.03 1.10 0.94 1.10

1.03 1.02 1.00 1.01 0.99 1.00 0.95 0.97 1.00 0.96

∠ Theoretical analysis of stereotyping in our paper.
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Stereotyping leads to harms of allocation

Q: Does stereotyping lead to an increase in misclassification rate? Fit a
linear classifier with CL embedding.

Metric: AH(y , y ′) = P
{
ŷ (y) = y ′

∣∣ y}− P
{
ŷ⋆ = y ′
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(a) allocation harm (AH)

airp
lan

e
ship

autom
obile

tru
ck deer hors

e

airplane

ship

automobile

truck

deer

horse

1.077
±0.013

0.94
±0.01

0.974
±0.01

0.962
±0.008

0.973
±0.007

0.975
±0.007

0.887
±0.008

1.154
±0.013

0.945
±0.008

0.952
±0.011

1.004
±0.006

1.007
±0.007

0.935
±0.006

0.914
±0.011

1.041
±0.01

0.78
±0.009

1.012
±0.008

1.008
±0.009

0.95
±0.013

0.916
±0.013

0.832
±0.012

1.001
±0.016

1.001
±0.008

0.982
±0.009

0.996
±0.008

1.0
±0.008

1.01
±0.009

1.006
±0.006

1.126
±0.012

0.953
±0.009

0.99
±0.008

1.001
±0.009

1.01
±0.01

0.993
±0.009

0.852
±0.008

1.068
±0.009

(b) representation harm (RH)

Key obs: stereotyping leads to harms of allocation among similar classes.
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Thank you!!!

Paper: An Investigation of Representation and Allocation Harms in
Contrastive Learning

Poster: Session 7; Friday, May 10th; 10:45am - 12:45pm local time

Contact info: Subha Maity; smaity@umich.edu

Maity, Agarwal, Yurochkin, & Sun Harms of representation & allocation in contrastive learning 7


