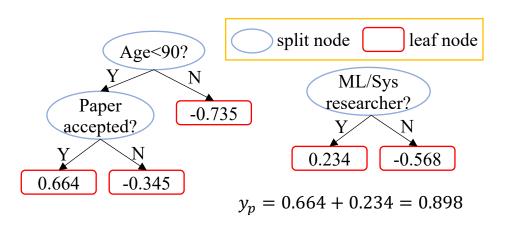
Effective and Efficient Federated Tree Learning on Hybrid Data

Qinbin Li¹, Chulin Xie², Xiaojun Xu², Xiaoyuan Liu¹, Ce Zhang^{3,4}, Bo Li^{2,3}, Bingsheng He⁵, Dawn Song¹ ¹UC Berkeley, ²UIUC, ³University of Chicago, ⁴Together AI, ⁵National University of Singapore

together.ai

Tree Models are Powerful and Efficient

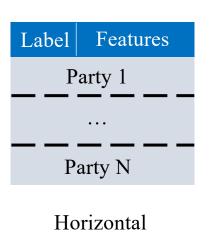


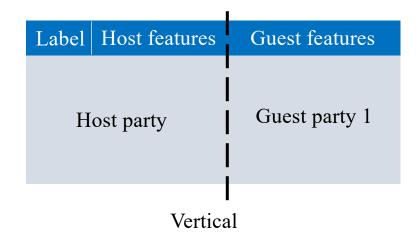
GBDT [3]

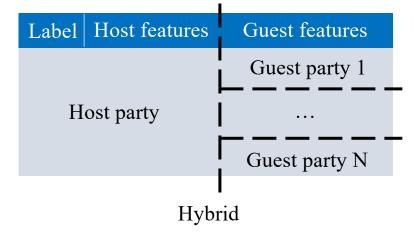
Credit risk assessment, pricing...

sepsis, cardiovascular...

Federated GBDT on Hybrid Data







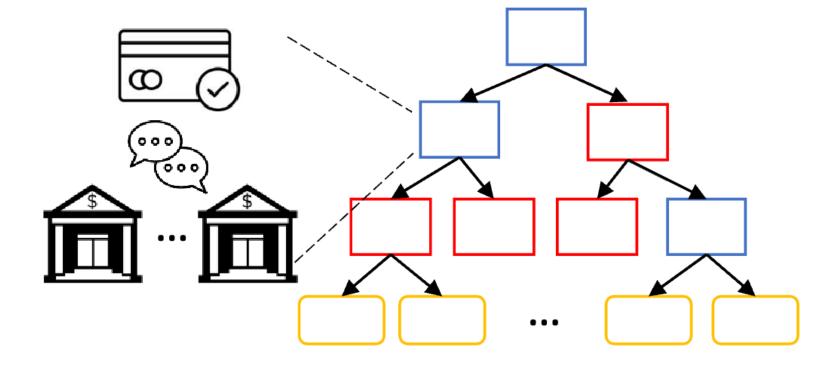
Host party: a payment system (e.g., SWIFT)

Guest party: bank

Node-level solution

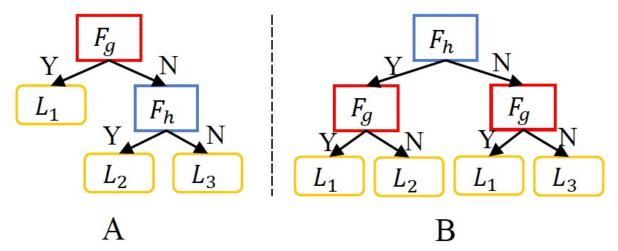
Aggregating gradients in each node using cryptographic methods.

Huge computation cost



Tree Transformation

Theorem 2. Suppose F_g is a meta-rule in Tree A. For any input instance $\mathbf{x} \in \mathcal{D}$, we have $E[f(\mathbf{x}; \theta_A)] = E[f(\mathbf{x}; \theta_B)]$, i.e., the expectation of prediction value of Tree A and Tree B are the same.

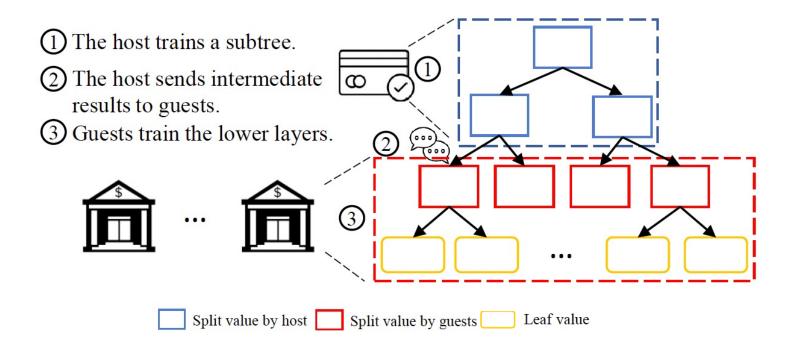


Theorem 3. Suppose $S_m := F_h \cap ... \cap F_g$ is a meta-rule in tree θ_A where F_g is a split condition using the feature from the guests. For any tree path in tree θ_A involving the split nodes in S_m , we can always reorder the split nodes in the tree path such that F_g is in the last layer. Moreover, naming the tree after the reordering as θ_B , we have $E[f(\mathbf{x}; \theta_A)] = E[f(\mathbf{x}; \theta_B)]$ for any input instance $\mathbf{x} \in \mathcal{D}$.

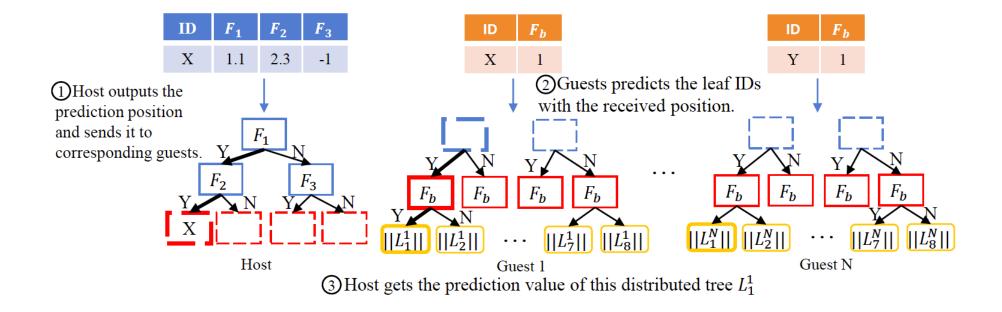
Move the split feature of the guest parties to the last layer.

Layer-wise Training

- Each party trains a subtree individually
- No gradient aggregation in each node



Inference



Experiments

- Datasets: 1) Hybrid datasets: AD, DEV-AD; 2) Simulated datasets: Adult,
 Cod-rna
- Approaches:
- 1) ALL-IN: centralized training
- 2) SOLO: local training
- 3) Two-party VFL: FedTree, SecureBoost, Pivot
- 4) TFL: tree-level aggregation

Effectiveness

	HybridTree	SOLO	FedTree	SecureBoost	Pivot	TFL ALL-IN
AD	0.689	0.492	0.537-0.566	0.537-0.566	0.534-0.561	0.530 0.703
DEV-AD	0.553	0.111	0.412-0.462	0.412-0.462	0.414-0.468	0.397 0.574
Adult	0.832	0.653	0.764-0.788	0.764-0.788	0.755-0.778	0.773 0.853
Cod-rna	0.927	0.690	0.805-0.863	0.805-0.863	0.811-0.870	0.884 0.931

Efficiency

	Communication size (GB)					Training time (s)					
	HybridTree	FedTree	SecureBoost	Pivot	speedup	HybridTree	FedTree	SecureBoost	Pivot	speedup	
AD	223.6	1363.9	1389.2	1420.3	6.1x	84.1	595.6	3212.7	316823	7.1x	
DEV-AD	142.6	770.1	681.9	792.2	5.4x	58.2	464.9	2856.6	284235	8.0x	
Adult	1.55	9.74	14.6	11.9	6.3x	2.0	8.6	71.1	9234	4.3x	
Cod-rna	2.84	15.92	20.4	18.5	5.6x	1.0	5.3	24.3	3845	5.3x	