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Off-Policy Evaluation of Deterministic Policies

Target Policy Value V(1)

Target Policy T ﬂ@ﬁ Off-Policy

Evaluation —] é)\;ﬁ
Data sampled with (OPE) =LJ |

behavior policy u

[N

* OPE is used when interaction with an environment is expensive or dangerous

For example, OPE can be used to predict the effects of

- Medical drug prescribing policies
- Policies controlling the durations or intensities of users’ exposure to interventions
- Dynamic pricing policies

* We focus on the OPE of deterministic policy since greedy (deterministic) policies are used in real-world
applications
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Extrapolation Error

Extrapolation error occurs when using bootstrapping with out-of-distribution (OOD)
samples to estimate functions such as Q-functions for OPE.
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* Fitted Q Evaluation (FQE) objective
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* Extrapolation error due to querying Q5 (s',7(s")) tofit Qa(s,a).



In-Sample FQE with Kernel-Based Importance Resampling
Importance resampling can be applied on FQE to avoid using OOD samples.

* Kernel relaxation
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* Importance resampling probability
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* Kernel metrics can be learned to assign high importance resampling probabilities on the transitions that
are helpful in fitting a Q-function.
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Kernel Metric Learning for In-Sample FQE (KMIFQE)

* For convenience, the scale of the kernel metric is referred to as bandwidth h, and the shape of
the metric is referred to as metric A(s).

e Gaussian kernel with metrics A(s) and bandwidths h is used.
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 We aim to accurately estimate the Q-function update vector from the bootstrapping objective
by kernel-based importance resampling with learned kernel metrics and bandwidths.

N 1 — i
=%ZwK( a;) Y (rj +7Qg (), a5) — Qo(sj, a;)) VeQo(s;, az),

g=1
b

where (sj,aj,r],sj,aj) ~ D



Optimal Bandwidth
MSE with hand A(s) =1
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Optimal Metric

With the optimal bandwidth h*, bias becomes dominant in the MSE in high dimensional action spaces.

2

d— oo 2

lim MSE (5, n,k,d) ~ | TEp, [V2Qo(5" @) |amre) VoQo(5,0)] |

7

~"

=b

* Bias (||b]|5 with A(s)) minimizing optimal metric A*(s) is the closed-form solution of the objective,
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* As both the optimal metric and bandwidth are dependent on the fitted Q-function, KMIFQE iteratively
updates bandwidth, metric, and Q-function until the Q-function converges.



Experiments: Synthetic Data

Synthetic data is generated from the modified inverted pendulum environment with additional dummy
action dimensions irrelevant to rewards and next state transitions.

—+— KMIFQE (bias?) —— KMIFQE (ours)
-—+-- KMIFQE (var) KMIFQE w/o Metric Learning
KMIFQE w/o Metric Learning (bias?) —— KMIFQE w/o Bandwidth Learning
KMIFQE w/o Metric Learning (var) - KMIFQE w/o Metric & Bandwidth Learning
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Experiments: MulJoCo Control Tasks

(RMSE)
Dataset known KMIFQE KMIFQE w/o Metric SR-DICE FQE
Hopper-v2 O 0.023 + 0.006 0.034 + 0.009 0.129 + 0.023 0.083 £ 0.011
HalfCheetah-v2 O 2.080 £+ 0.010 2.549 £ 0.017 2.784 £+ 0.030 1.637 £+ 0.051
Walker2d-v2 O 0.032 + 0.008 0.048 + 0.009 0.273 £ 0.054 241.319 +49.248
Ant-v2 O 1.800 + 0.013 2.255 +0.014 1.996 + 0.030 3.219 +0.736
Humanoid-v2 O 0.246 + 0.010 0.293 + 0.021 1.285 4+ 0.050 8.860 + 8.196
hopper-m-e-v2 X 0.019 + 0.003 0.020 + 0.005 0.045 + 0.007 0.033 £ 0.010
halfcheetah-m-e-v2 X 0.418 £ 0.016 0.457 = 0.007 0.239 £+ 0.025 0.080 £ 0.007
walker2d-m-e-v2 X 0.036 + 0.006 0.038 + 0.006 0.115 £ 0.017 1.051 4+ 0.633
hopper-m-r-v2 X 0.536 + 0.099 0.517 + 0.120 0.849 £ 0.052 0.561 £+ 0.118
halfcheetah-m-r-v2 X 4.698 + 0.044 4.765 £ 0.026 5.048 £+ 0.090 6.394 + 1.769
walker2d-m-r-v2 X 1.364 + 0.052 1.360 + 0.025 1.523 4+ 0.061 86.315 £+ 29.206
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