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Off-Policy Evaluation of Deterministic Policies

• OPE is used when interaction with an environment is expensive or dangerous

For example, OPE can be used to predict the effects of 

- Medical drug prescribing policies
- Policies controlling the durations or intensities of users’ exposure to interventions
- Dynamic pricing policies

• We focus on the OPE of deterministic policy since greedy (deterministic) policies are used in real-world 
applications
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Extrapolation Error

Extrapolation error occurs when using bootstrapping with out-of-distribution (OOD) 
samples to estimate functions such as Q-functions for OPE.

• Deterministic policy 𝜋 can be evaluated as                                 .

• Fitted Q Evaluation (FQE) objective

• Extrapolation error due to querying                            to fit                  .
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In-Sample FQE with Kernel-Based Importance Resampling

Importance resampling can be applied on FQE to avoid using OOD samples.

• Kernel relaxation
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In-Sample FQE with Kernel-Based Importance Resampling

Importance resampling can be applied on FQE to avoid using OOD samples.

• Kernel relaxation

• Importance resampling probability

• FQE with importance resampling

• Kernel metrics can be learned to assign high importance resampling probabilities on the transitions that 
are helpful in fitting a Q-function.
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Kernel Metric Learning for In-Sample FQE (KMIFQE)
• For convenience, the scale of the kernel metric is referred to as bandwidth ℎ, and the shape of 

the metric is referred to as metric 𝐴(𝑠).

• Gaussian kernel with metrics 𝐴(𝑠) and bandwidths ℎ is used.

• We aim to accurately estimate the Q-function update vector from the bootstrapping objective 
by kernel-based importance resampling with learned kernel metrics and bandwidths.
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Optimal Bandwidth
MSE with ℎ and 𝐴 𝑠 = 𝐼

• Leading-order MSE minimizing optimal bandwidth ℎ∗



With the optimal bandwidth ℎ∗, bias becomes dominant in the MSE in high dimensional action spaces.

• Bias ( 𝒃 2
2 with 𝐴(𝑠)) minimizing optimal metric 𝐴∗(𝑠) is the closed-form solution of the objective,

• As both the optimal metric and bandwidth are dependent on the fitted Q-function, KMIFQE iteratively 
updates bandwidth, metric, and Q-function until the Q-function converges. 
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Optimal Metric



Synthetic data is generated from the modified inverted pendulum environment with additional dummy 
action dimensions irrelevant to rewards and next state transitions.
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Experiments: Synthetic Data
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Experiments: MuJoCo Control Tasks

(RMSE)
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