

Kernel Metric Learning for In-Sample Off-Policy Evaluation of Deterministic RL Policies

ICLR 2024 | Spotlight

Haanvid Lee¹, Tri Wahyu Guntara¹, Jongmin Lee², Yung-Kyun Noh^{3,4}, Kee-Eung Kim¹

Off-Policy Evaluation of Deterministic Policies

• OPE is used when interaction with an environment is expensive or dangerous

For example, OPE can be used to predict the effects of

- Medical drug prescribing policies
- Policies controlling the durations or intensities of users' exposure to interventions
- Dynamic pricing policies
- We focus on the OPE of deterministic policy since greedy (deterministic) policies are used in real-world applications

Extrapolation Error

Extrapolation error occurs when using bootstrapping with out-of-distribution (OOD) samples to estimate functions such as Q-functions for OPE.

• Deterministic policy π can be evaluated as $\mathbb{E}[Q_{\theta}(s_0, \pi(s_0))]$.

• Fitted Q Evaluation (FQE) objective

$$\min_{\theta} \mathbb{E}_{(s,a,r,s')\sim p_{\mu}} \left[\left(Q_{\theta}(s,a) - \left(r + \gamma Q_{\bar{\theta}}\left(s', \pi(s') \right) \right) \right)^2 \right]$$

• Extrapolation error due to querying $Q_{\bar{\theta}}(s', \pi(s'))$ to fit $Q_{\theta}(s, a)$.

In-Sample FQE with Kernel-Based Importance Resampling

Importance resampling can be applied on FQE to avoid using OOD samples.

• Kernel relaxation

In-Sample FQE with Kernel-Based Importance Resampling

Importance resampling can be applied on FQE to avoid using OOD samples.

• Kernel relaxation

$$\delta\left(a' - \pi(s')\right) \longrightarrow K(a', \pi(s'))$$

• Importance resampling probability

$$\rho_j^K := \frac{w^K\left(s'_j, a'_j\right)}{\sum_{i=1}^n w^K\left(s'_i, a'_i\right)}, \text{ where } w^K(s', a') := \frac{K(a', \pi(s'))}{\mu\left(a' \mid s'\right)}$$

• FQE with importance resampling

$$\min_{\theta} \mathbb{E}_{D \sim p_{\mu}, (s, a, r, s', a') \sim \rho^{K}(\cdot | D)} \left[\frac{1}{n} \sum_{i=1}^{n} w^{K}(s'_{i}, a'_{i}) \left(Q_{\theta}(s, a) - \left(r + \gamma Q_{\bar{\theta}}\left(s', a'\right) \right) \right)^{2} \right]$$

• Kernel metrics can be learned to assign high importance resampling probabilities on the transitions that are helpful in fitting a Q-function.

Kernel Metric Learning for In-Sample FQE (KMIFQE)

- For convenience, the scale of the kernel metric is referred to as bandwidth *h*, and the shape of the metric is referred to as metric *A*(*s*).
- Gaussian kernel with metrics A(s) and bandwidths h is used.

$$K(a', \pi(s')) := \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{(a' - \pi(s'))^\top A(s') (a' - \pi(s'))}{2h^2}\right),$$
$$|A(s')| = 1, A(s')^\top = A(s'), A(s') \succ 0$$

• We aim to accurately estimate the Q-function update vector from the bootstrapping objective by kernel-based importance resampling with learned kernel metrics and bandwidths.

$$\widehat{\Delta} := \frac{1}{nk} \sum_{i=1}^{n} w^{K}(s'_{i}, a'_{i}) \sum_{j=1}^{k} \left(r_{j} + \gamma Q_{\overline{\theta}} \left(s'_{j}, a'_{j} \right) - Q_{\theta}(s_{j}, a_{j}) \right) \nabla_{\theta} Q_{\theta}(s_{j}, a_{j}),$$
where $(s_{j}, a_{j}, r_{j}, s'_{j}, a'_{j}) \stackrel{\rho_{j}^{K}}{\sim} D$

Optimal Bandwidth

MSE with h and A(s) = I

$$\operatorname{MSE}\left(h, n, k, d\right) = \underbrace{h^{4} \|\mathbf{b}\|_{2}^{2}}_{(\text{leading-order bias})^{2}} + \underbrace{\frac{v}{nh^{d}}}_{(\text{leading-order variance})} + O\left(h^{6}\right) + O\left(\frac{1}{nh^{d-2}}\right) + O\left(\frac{1}{k}\right),$$

$$\mathbf{b} := \frac{\gamma}{2} \mathbb{E}_{\mathcal{D} \sim p_{\mu}} \left[\nabla_{a'}^{2} Q_{\bar{\theta}}(s', a') |_{a'=\pi(s')} \nabla_{\theta} Q_{\theta}(s, a) \right],$$
$$v := (4\pi)^{-\frac{d}{2}} \mathbb{E}_{p_{\mu}} \left[\frac{(r + \gamma Q_{\bar{\theta}}(s', \pi(s')) - Q_{\theta}(s, a))^{2} \| \nabla_{\theta} Q_{\theta}(s, a) \|_{2}^{2}}{\mu(\pi(s') \mid s')} \right]$$

- Leading-order MSE minimizing optimal bandwidth h^{st}

$$h^* = \left(\frac{vd}{4n\|\mathbf{b}\|_2^2}\right)^{\frac{1}{d+4}}$$

Optimal Metric

With the optimal bandwidth h^* , bias becomes dominant in the MSE in high dimensional action spaces.

$$\lim_{d \to \infty} \text{MSE}\left(h^*, n, k, d\right) \approx \left\| \underbrace{\frac{\gamma}{2} \mathbb{E}_{\mathcal{D} \sim p_{\mu}} \left[\nabla_{a'}^2 Q_{\bar{\theta}}(s', a') |_{a'=\pi(s')} \nabla_{\theta} Q_{\theta}(s, a) \right]}_{=\mathbf{b}} \right\|_2^2$$

• Bias ($\|\boldsymbol{b}\|_2^2$ with A(s)) minimizing optimal metric $A^*(s)$ is the closed-form solution of the objective,

$$\min_{\substack{A: \ A(s') \succ 0, \\ A(s') = A(s')^{\top}, |A(s')| = 1 \ \forall s'}} \operatorname{tr} \left(A(s')^{-1} \mathbf{H}_{a'} Q_{\bar{\theta}}(s', a') \big|_{a' = \pi(s')} \right)^2$$

• As both the optimal metric and bandwidth are dependent on the fitted Q-function, KMIFQE iteratively updates bandwidth, metric, and Q-function until the Q-function converges.

Experiments: Synthetic Data

Synthetic data is generated from the modified inverted pendulum environment with additional dummy action dimensions irrelevant to rewards and next state transitions.

Experiments: MuJoCo Control Tasks

(RMSE)

Dataset	known μ	KMIFQE	KMIFQE w/o Metric	SR-DICE	FQE
Hopper-v2	0	$\textbf{0.023} \pm \textbf{0.006}$	0.034 ± 0.009	0.129 ± 0.023	0.083 ± 0.011
HalfCheetah-v2	Ο	2.080 ± 0.010	2.549 ± 0.017	2.784 ± 0.030	$\textbf{1.637} \pm \textbf{0.051}$
Walker2d-v2	Ο	$\textbf{0.032} \pm \textbf{0.008}$	0.048 ± 0.009	0.273 ± 0.054	241.319 ± 49.248
Ant-v2	Ο	$\textbf{1.800} \pm \textbf{0.013}$	2.255 ± 0.014	1.996 ± 0.030	3.219 ± 0.736
Humanoid-v2	0	$\textbf{0.246} \pm \textbf{0.010}$	0.293 ± 0.021	1.285 ± 0.050	8.860 ± 8.196
hopper-m-e-v2	Х	$\textbf{0.019} \pm \textbf{0.003}$	$\textbf{0.020} \pm \textbf{0.005}$	0.045 ± 0.007	0.033 ± 0.010
halfcheetah-m-e-v2	Х	0.418 ± 0.016	0.457 ± 0.007	0.239 ± 0.025	$\textbf{0.080} \pm \textbf{0.007}$
walker2d-m-e-v2	Х	$\textbf{0.036} \pm \textbf{0.006}$	$\textbf{0.038} \pm \textbf{0.006}$	0.115 ± 0.017	1.051 ± 0.633
hopper-m-r-v2	Х	$\textbf{0.536} \pm \textbf{0.099}$	$\textbf{0.517} \pm \textbf{0.120}$	0.849 ± 0.052	$\textbf{0.561} \pm \textbf{0.118}$
halfcheetah-m-r-v2	Х	$\textbf{4.698} \pm \textbf{0.044}$	4.765 ± 0.026	5.048 ± 0.090	6.394 ± 1.769
walker2d-m-r-v2	Х	$\textbf{1.364} \pm \textbf{0.052}$	$\textbf{1.360} \pm \textbf{0.025}$	1.523 ± 0.061	86.315 ± 29.206

Thank You!

• Poster | Halle B, Tue 7 May 4:30 p.m. CEST — 6:30 p.m. CEST

